LATTICE GAUGE THEORY IN TECHNICOLOR

B. Svetitsky Tel Aviv University

with Y. Shamir and T. DeGrand

(YS, BS, & TD, arXiv:0803.1707 [hep-lat])

- 1. Beyond the Standard Model more gauge groups, more reps
 - β function scenarios
- 2. Method: Schrödinger Functional (background field method) and the lattice phase diagram
- 3. Results for:

The β function of the SU(3) gauge theory with $N_f=2$ fermions in the 6 rep

4. and:

 $m, T \neq 0$: Phase diagram on a finite lattice

BEYOND THE STANDARD MODEL on a lattice:

Strong coupling gauge theories — specifically

- Technicolor; walking
- vs. Unparticles?
- Supersymmetry

BEYOND THE STANDARD MODEL on a lattice:

Strong coupling gauge theories — specifically

- Technicolor; walking
- vs. Unparticles?
- Supersymmetry

Obstacles to lattice studies:

- Sign problem odd N_f , $\theta \neq 0$, $\mu \neq 0$
- Chiral fermions
- Supersymmetry

BEYOND THE STANDARD MODEL on a lattice:

Strong coupling gauge theories — specifically

- Technicolor; walking
- vs. Unparticles?
- Supersymmetry

Obstacles to lattice studies:

- Sign problem odd N_f , $\theta \neq 0$, $\mu \neq 0$
- Chiral fermions
- Supersymmetry

Current studies: (Lattice 2008)

- SU(3) with fund rep quarks: $N_f = 8,12$
- SU(2) with adjoint rep quarks
- SU(3) with sextet quarks ***
- SU(N) with 2-index symm rep quarks (quenched)
- SU(2) SUSY

Why this model?

- Banks—Zaks fixed point (Caswell 1974; Banks & Zaks 1981) Is it really there?
- Scale separation: $C_2(R) = \frac{10}{3}$ vs. $\frac{4}{3}$ for fund rep

Why this model?

- Banks—Zaks fixed point (Caswell 1974; Banks & Zaks 1981) Is it really there?
- Scale separation: $C_2(R) = \frac{10}{3}$ vs. $\frac{4}{3}$ for fund rep

Banks-Zaks: Perturbation theory

$$\beta(g^2) = -\frac{b_1}{16\pi^2}g^4 - \frac{b_2}{(16\pi^2)^2}g^6 + \cdots$$

Here $b_1 > 0$, $b_2 < 0$ [as in QCD with $8.05 < N_f < 16\frac{1}{2}$]

 \Longrightarrow IR-attractive fixed point at $g_*^2 \simeq 10.4$ — a strong coupling

What can happen NONPERTURBATIVELY?

$$\label{eq:interpolation} \begin{split} \mathsf{IRFP} &\Rightarrow \mathsf{conformal} \; \mathsf{dynamics} \; \mathsf{at} \; \mathsf{large} \\ &\quad \mathsf{distances} \\ &\Rightarrow \mathsf{no} \; \mathsf{confinement}, \; \mathsf{no} \; \chi \mathsf{SB}, \end{split}$$

no particles!

[unparticles?]

 $g_*^2 \ {\rm strong}$ $\chi {\rm SB} \Rightarrow {\rm fermions} \ {\rm decouple,} \ {\rm back} \ {\rm to} \ \beta \ {\rm fn}$ of pure gauge theory

[Technicolor ... maybe walking]

CALCULATING THE β FUNCTION: the Schrödinger Functional

- Wilson fermions because
 - 1. boundary values (background field) can be set on a single time slice
 - 2. control over N_f
- SF: fix spatial links U_i on time boundaries t = 0, L
- Calculate the free energy $\Gamma \equiv -\log Z$ since $\Gamma \equiv \frac{1}{g^2(L)} S^{cl}_{YM}$ gives the running coupling $g^2(L)$.

But we can't calculate Γ directly, so:

Choose boundary values U_i to depend on a parameter η . Then

$$\frac{\partial \Gamma}{\partial \boldsymbol{\eta}} = \left\langle \frac{\partial S_{YM}}{\partial \boldsymbol{\eta}} - \operatorname{tr} \left(\frac{1}{D_F^{\dagger}} \frac{\partial (D_F^{\dagger} D_F)}{\partial \boldsymbol{\eta}} \frac{1}{D_F} \right) \right\rangle = \frac{K}{g^2(L)}, \qquad K \equiv \frac{\partial S_{YM}^{cl}}{\partial \boldsymbol{\eta}} = 37.7 \dots$$

EXTRACTING PHYSICS

- 1. Fix lattice size L, couplings $\beta \equiv 6/g_0^2$, $\kappa = \kappa_c(\beta)$
- 2. Calculate $K/g^2(L)$ and $K/g^2(2L)$. Use common lattice spacing (= UV cutoff) a=L/4.
- 3. Result: Discrete Beta Function

$$B(u, 2) = \frac{K}{g^2(2L)} - \frac{K}{g^2(L)},$$

a function of $u \equiv K/g^2(L)$.

The DISCRETE BETA FUNCTION

$$4^4 \longrightarrow 8^4$$

B(u,2) crosses zero at $g^2 \simeq 2.0$ not at $g^2 \simeq 10!$

 \Longrightarrow IR theory is CONFORMAL

The DISCRETE BETA FUNCTION

Cf.
$$6^4 \longrightarrow 8^4$$

Caveat cursor

- Is there only one, unique running coupling?
 - Perturbatively, yes.
 - If the $q\bar{q}$ potential is almost Coulombic: $V(r)\simeq g^2(r)/r$
- Is it really an IRFP?
- Can we extend the picture off the $\kappa_c(\beta)$ curve?

Caveat cursor

- Is there only one, unique running coupling?
 - Perturbatively, yes.
 - If the $q \bar q$ potential is almost Coulombic: $V(r) \simeq g^2(r)/r$
- Is it really an IRFP?
- Can we extend the picture off the $\kappa_c(\beta)$ curve?

"PHASE DIAGRAM" in finite volume

 $N_t = 8,12$: "finite temperature," confinement and chiral phase transition!

⇒ No evidence of scale separation

Note weak coupling at IRFP

Caveat cursor

- Is there only one, unique running coupling?
 - Perturbatively, yes.
 - If the $q\bar{q}$ potential is almost Coulombic: $V(r)\simeq g^2(r)/r$
- Is it really an IRFP?
- Can we extend the picture off the $\kappa_c(\beta)$ curve?

ANSWERS will come from:

- More knowledge of phase diagram
- Checking beta function with more volumes
- Eventually: scaling towards the continuum limit

MORE QUESTIONS

• Properties of (near-) conformal theory