Investigation of the CNO-break-out reaction: 15O$(2p,\gamma)^{17}$Ne, by the Coulomb Dissociation of 17Ne

J. Marganiec
ExtreMe Matter Institute EMMI, GSI Darmstadt, Germany
• rp process and motivation;
• coulomb dissociation as a source of information on radiative capture processes;
• experimental setup;
• preliminary results:
 - integral Coulomb dissociation cross section;
 - differential Coulomb dissociation cross section;
 - photoabsorption cross section;
• acceptance;
• future work;
• summary.
• in cataclysmic binary systems (X-ray bursts);

• sequence of proton captures and β^+ decays;

• the proton capture is inhibited and the long half-life => the waiting points.
1. the nucleus ^{15}O \(\Rightarrow\) a waiting point for the break-out of the CNO cycle

CNO cycle: $^{12}\text{C}(p,\gamma)^{13}\text{N}(e,\nu)^{13}\text{C}(p,\gamma)^{14}\text{N}(p,\gamma)^{15}\text{O}(e,\nu)^{15}\text{N}(p,\gamma)^{12}\text{C}$

Heavier elements: $^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}(p,\gamma)^{20}\text{Na}$

Alternative reaction: $^{15}\text{O}(2p,\gamma)^{17}\text{Ne}(\beta)^{17}\text{F}(p,\gamma)^{18}\text{Ne}(2p,\gamma)^{20}\text{Mg}(\beta)^{20}\text{Na}$

2. the reaction rate can be enhanced by a few orders of magnitude by taking into account the three-body continuum states;
Coulomb dissociation as a source of information on radiative capture processes

Useful to measure radiative-capture reactions with:
- small cross sections;
- unstable nuclei;
- three particles in entrance channel.

\[\text{virtual photon theory} \]

the nuclear Coulomb field \(\Rightarrow \) a source of the photodisintegration processes

\[a + Z \rightarrow b + c + Z \]

\[\frac{d\sigma_{CD}}{dE_\gamma} = \frac{1}{E_\gamma} n\sigma(\gamma,b) \quad \text{virtual photon theory} \]

detailed balance theorem

\[\sigma(b,\gamma) = \frac{2(2j_a + 1)}{(2j_b + 1)(2j_c + 1)} \frac{k_\gamma^2}{k^2} \sigma(\gamma,b) \]
Coulomb dissociation as a source of information on radiative capture processes

advantages:

• high virtual photon flux;

• large cross section at low E_{cm};

• charged particle detection;

• kinematically focused;

• experiments with radioactive ion beams possible.

disadvantages:

• indirect method;

• bad energy resolution;

• multipole admixtures must be clarified;

• nuclear contributions.
The uncertain part => the configuration of the two protons outside the 15O core, which occupy either s-wave ($[s^2]$) or d-wave ($[d^2]$) orbitals

$$\Psi_{g.s.} \sim \alpha [s^2] + \beta [d^2]$$

$[s^2]$ – dominant

$[d^2]$ – dominant
production of exotic beam setup

\[B \rho = \frac{p}{Q} \propto \frac{A}{Z} \beta \gamma \]
The energy of incoming beam = 500 MeV/u
LAND-R³B experimental setup

The energy of incoming beam = 500 MeV/u
LAND-\(R^3B\) experimental setup

The energy of incoming beam = 500 MeV/u
LAND-R3B experimental setup

The energy of incoming beam = 500 MeV/u
LAND-R³B experimental setup

The energy of incoming beam = 500 MeV/u
LAND-R3B experimental setup

The energy of incoming beam = 500 MeV/u
LAND-R³B experimental setup

The energy of incoming beam = 500 MeV/u
LAND-R³B experimental setup

The energy of incoming beam = 500 MeV/u
Precise position from two silicon strip detectors

Precise position from fiber detectors

Precise position from drift chambers

Mass?

Output from tracker:

masses, velocities → momenta

↓ excitation energy

\[B\rho = \frac{A}{Z}\beta\gamma \]

Charge, ToF and rough position from tof wall

Rough ToF from tof wall

Counts

Excitation energy [MeV]
background subtraction
proton arm efficiency

<table>
<thead>
<tr>
<th></th>
<th>DCh1</th>
<th>DCh2</th>
<th>TFW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>63.9%</td>
<td>76.7%</td>
<td>87.6%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>42.9%</td>
</tr>
</tbody>
</table>
Coulomb dissociation cross section

\[\sigma_{\text{Coulex}} = p_{Pb} \left(\frac{M_{Pb}}{d_{Pb} N_{Av}} \right) - p_C \left(\alpha \frac{M_C}{d_C N_{Av}} \right) - p_{\text{empty}} \left(\frac{M_{Pb}}{d_{Pb} N_{Av}} - \alpha \frac{M_C}{d_C N_{Av}} \right) \]

Integral Coulomb Dissociation Cross Section

\[\sigma = 242 \pm 34 \text{ mb (14\% - statistic)} \]

\[b_{\text{min}} = 10.8 \text{ fm} \]

Theoretical predictions N. Shulgina

\[s^2 5\% - \sigma = 208 \text{ mb} \]
\[s^2 50\% - \sigma = 394 \text{ mb} \]
\[s^2 75\% - \sigma = 468 \text{ mb} \]

\[b_{\text{min}} = 9.7 \text{ fm} \]
Coulomb dissociation cross section

\[b_{\text{min}} \approx r_0[A^{1/3} + B^{1/3} - x(A^{-1/3} + B^{-1/3})] \]

\[r_0 = 1.34 \text{ fm} \]
\[x = 0.75 \]

C.J. Benesh, B.C. Cook, and J.P. Vary

Dissociation probabilities for 520 Mev/nucleon
\(^{11}\text{Be}\) on lead as a function of impact parameter \(b\)

\[b_{\text{min}} = 10.8 \text{ fm} \]
\[b_{\text{min}} = 9.7 \text{ fm} \]
Coulomb dissociation cross section

Integral Coulomb Dissociation Cross Section

\[\sigma_{\text{Coulex}} = p_{\text{Pb}} \left(\frac{M_{\text{Pb}}}{d_{\text{Pb}} N_{\text{Av}}} \right) - p_C \left(\alpha \frac{M_C}{d_C N_{\text{Av}}} \right) - p_{\text{empty}} \left(\frac{M_{\text{Pb}}}{d_{\text{Pb}} N_{\text{Av}}} - \alpha \frac{M_C}{d_C N_{\text{Av}}} \right) \]

\[\sigma = 242 \pm 34 \text{ mb (14\% - statistic)} \]

\[b_{\text{min}} = 10.8 \text{ fm} \]

Theoretical predictions

N. Shulgina

\[s^2 \ 5\% - \sigma = 208 \text{ mb} \]
\[s^2 \ 50\% - \sigma = 394 \text{ mb} \]
\[s^2 \ 75\% - \sigma = 468 \text{ mb} \]

\[b_{\text{min}} = 9.7 \text{ fm} \]

\[s^2 \ \text{contribution estimation} \]
differential Coulomb dissociation cross section

preliminary results
differential Coulomb dissociation cross section

preliminary results
differential Coulomb dissociation cross section

M.J. Chromik et al.
L.V Grigorenko

s^2 - 48%

N.B Shulgina
s^2 - 50%
d^2 - 50%
E_{beam} = 240 MeV/u
differential Coulomb dissociation cross section

L.V. Grigorenko

preliminary results

M.J. Chromik et al.

L.V. Grigorenko

$s^2 - 48\%$
N.B. Shulgina

$s^2 - 50\%$

d$^2 - 50\%$

$E_{\text{beam}} = 240$ MeV/u
$^{17}\text{Ne}(\gamma, 2p)^{15}\text{O}$ cross section

virtual photon theory

\[\frac{d\sigma_{CD}}{dE_\gamma} = \frac{1}{E_\gamma} n\sigma(\gamma, b) \]

\[\Rightarrow \]

photoabsorption cross section

\[\sigma(\gamma, b) = \frac{d\sigma_{CD}}{dE_\gamma} E_\gamma \frac{1}{n} \]
$^{17}\text{Ne}(\gamma, 2p)^{15}\text{O}$ cross section

preliminary results
acceptance

preliminary results
acceptance

preliminary results
What has to be done:

1. acceptance simulation;

2. acceptance correction for Coulomb excitation cross section and photoabsorption cross section;

3. recalculation of a photoabsorption cross section into a radiative capture cross section;

4. uncertainties calculation;
summary

- $^{15}\text{O}(2p,\gamma)^{17}\text{Ne}$ => maybe the alternative break-out reaction of CNO cycle;

- the Coulomb dissociation method => only one way to the three particles in entrance channel measurements;

- up to now, it is not possible to compare the experimental integral Coulomb dissociation cross section with theoretical predictions;

- good agreement between the shape of differential Coulomb dissociation cross section and theoretical predictions;

- the calculation of $^{15}\text{O}(2p,\gamma)^{17}\text{Ne}$ cross section => in progress.
Collaboration:

T. Aumann1,2, M. Heil1, R. Plag1,3, F. Wamers1,2

for LAND-R3B collaboration

1 Kernreaktion und Nuklear Astrophysik, GSI Darmstadt, Germany
2 Institut für Kernphysik, TU Darmstadt, Germany
3 Goethe-Universität, Frankfurt am Main, Germany

Thank you!