“Direct measurement of the $^2\text{H}(\alpha,\gamma)^6\text{Li}$ cross section at energies of astrophysical interest”

Alessandro Bellini
INFN Genova, Italy
LUNA Collaboration
The $^2\text{H}(\alpha,\gamma)^6\text{Li}$ Nuclear Reaction

Introduction

- ^6Li has the next-highest predicted primordial abundance after D, ^3He, ^4He and ^7Li

Challenge: what is the origin of observed ^6Li in old halo star?

- Primordial?
- Pre-galactic?
- Exotic origin?

- Primordial ^6Li production \rightarrow $^2\text{H}(\alpha,\gamma)^6\text{Li}$

^6Li has been found in non negligible quantities in very old low metallicity halo stars \rightarrow unexpectedly high amount (2-3 orders of magnitude compared to available BBN network predictions - NACRE)
The $^2\text{H}(\alpha,\gamma)^6\text{Li}$ Nuclear Reaction

Status of Art

- Direct measurements: does not exist at BBN energies; only above 1 MeV (Robertson et al., 1981) and around the resonance at 711 keV (Mohr et al., 1996).

- At energy of astrophysical interest only indirect measurements using Coulomb dissociation exist (Kiener et al., 1991; Mukhamedzhanov et al., 1995; Hammache et al., 2010).

- All the estimates are still differing by more than one order of magnitude.

- Expected cross section of few pico-barns

At LUNA a direct measurement at energies of astrophysical interest is possible!

S-factor of the D+α reaction as a function of the interaction energy

LUNA Underground Facility

@ Laboratori Nazionali del Gran Sasso

- \(R_{\text{lab}} = \sigma I_p \varepsilon \rho N_{AV} / A \)
 - \(I_p \sim mA; \varepsilon \sim 10\%; \rho \sim \mu g/cm^2 \)
 - \(pb < \sigma < nb \)
- \(\text{events/month} < R_{\text{lab}} < \text{events/day} \)
- Low cross section condition → poor signal-to-noise ratio → improve yields or reduce background.
- **Advantages of going underground @ LNGS:**
 - Natural shielding of about 1400 m of rocks (4000 m w.e.)
 - Muon flux reduced by a factor \(10^6 \); neutron flux reduced by a factor \(10^3 \) (referring to the surface)
Detectors can be shielded passively with proper Pb-Cu shield as on surface, but underground passive shielding is more effective since μ and neutron fluxes, that create secondary γ's in the shield, are suppressed. The decaying 222Rn and its daughters produce secondary γ radiation. A popular solution of this problem is to house the detector in a box with a small overpressure of flushing nitrogen.
LUNA Underground Facility
Experimental Apparatus

- **LUNA II ACCELERATOR**
 - Installed in 2000
 - $V_{\text{MAX}} = 400$ kV
 - High beam intensity:
 - 350 μA protons
 - 300 μA α particles
 - High stability
 - High energy resolution
 - $\Delta E_{\text{beam}} \leq 100$ eV
LUNA Underground Facility
Experimental Apparatus

- Windowless differentially pumped gas target
- Adjustable target thickness (D₂ target, 18 cm long, pressure range 0.1 ÷ 1.2 mbar)
- Good isotopical purity
- High stability over long run periods

HpGe detector
(135% relative efficiency)
Located in close geometry (distance from target: 5mm)
Simulated total gamma efficiency in the ROI is 2.5%

Calorimeter (made of copper) for beam intensity measurement (termic power measurement)
LUNA Underground Facility
Experimental Apparatus

- Lead passive shielding
- Radon-box
- PE shielding

\[T_{\text{meas}} = 4.8 \text{ d} \]
Beam Induced Background

- **Reactions induced by a beam**

 \[\text{D}(d,n)^3\text{He} \quad \text{&} \quad \text{D}(d,p)^3\text{H} \]

- Neutron interaction with set-up (inelastic scattering) produce a γ background

- Neutron production control needed

 - LNGS Scientific Committee

 neutron production limit

 - \(\frac{10 \text{neutrons}}{\text{sec}} \)

 \(\text{e.g. 130} \mu\text{A a beam at 0.5 mbar D}_2 \text{ gas target pressure} \)

Experimental set-up adjustments: reduction of diffused deuterons mean free path
LUNA Underground Facility
Experimental Apparatus

\[n_{\text{produced}} = p_{\text{produced}} \frac{\sigma_{D(d,n)^3He}}{\sigma_{D(d,p)^3H}} ; \quad p_{\text{produced}} = \frac{p_{\text{measured}}}{\eta_{Si}} \]

D(d,n)^3He & D(d,p)^3H
(cross section known with high precision)

\[E_{\text{beam}} = 360 \text{ keV}, I_{\text{beam}} = 289 \mu A, \]
\[P_{D2} = 0.2 \text{ mbar}, T_{\text{meas}} = 2.48 \text{ d} \]

- Si detector
- 1500 \mu m
- Al window
- Peltier cooling
$^{2}\text{H}(\alpha,\gamma)^{6}\text{Li} \rightarrow \text{ROI} \rightarrow 1580 \div 1630 \text{ keV}$

(@ 400 keV)

$^{2}\text{H}(\alpha,\gamma)^{6}\text{Li} \rightarrow Q = 1.46 \text{ Mev}$

$$E_{\gamma} = E_{cm} + Q + \Delta E_{\text{Doppler}} - \Delta E_{\text{Recoil}}$$
Data Taking

Best Experimental Conditions

- Maximum beam energy: $E_{\text{beam}} = 400$ keV ($E_{\text{cm}} = 133$ keV)
 - Signal $\propto P$
 - Beam Induced Background $\propto P^2$
 - Current limits vs D_2 pressure (neutron production)

- D_2 pressure: $P = 0.2$ mbar

- Maximum beam current ($I_{\text{beam}} = 260$ μA)

- Measurements from October 21st 2010 to November 1st 2010, 75% duty cycle $\rightarrow \sim 200$ h
Data Taking

Measured Spectra

$E_a = 400 \text{ keV}, \ I_{\text{beam}} = 260 \mu A, P_{\text{d2}} = 0.2 \text{ mbar}$

Laboratory Background
Data Taking

Measured Spectra

^{63}Cu (1547 keV) $^{2}\text{H}(\alpha,\gamma)^{6}\text{Li}$ ROI

^{65}Cu (1623 keV)

$E_\alpha = 400$ keV, $I_{\text{beam}} = 260 \mu$A, $P_{\text{D2}} = 0.2$ mbar

Laboratory Background

$(471 \pm 8) \frac{\text{counts}}{\text{day}}$
Spectra Analysis

- $^2\text{H}(\alpha,\gamma)^6\text{Li ROI}$
 - Laboratory background: $(76 \pm 4) \frac{\text{counts}}{\text{day}}$
- Measured Spectra: $(471 \pm 8) \frac{\text{counts}}{\text{day}}$
- Expected Signal: $(44 \pm 2) \frac{\text{counts}}{\text{day}}$

(Calculated using existing indirect data of Hammache et al.)

Signal-to-Noise ratio $\approx \frac{1}{10}$
Spectra Analysis
Copper Peaks

$^{65}\text{Cu} \at \ 1623 \text{ keV}$

Cu? HpGe detector and calorimeter
Spectra Analysis

Copper Peaks

$E_{\text{beam}} = 400 \text{ keV}$
$E_{\text{beam}} = 360 \text{ keV}$

Signal counting rate reduction by 25%
Spectra Analysis
Copper Peaks

\[E_{\text{beam}} = 360 \text{ keV} \]

\[E_{\text{beam}} = 400 \text{ keV} \]

\[^{65}\text{Cu} @ 1623 \text{ keV} \]
Beam Induced Background Measurements

$E_{\text{4He beam}} = 400$ keV

Beam Induced Background: dominant part of the spectra → to be measured with high precision

- $^2\text{H}(^3\text{He},p)^4\text{He}$

Allow to measure only beam induced background without the signal

Simulations show a very similar diffused deuterium distributions

Using ^3He beam same beam induced background is expected

$E_{\text{3He beam}} = 370$ keV

TO BE DONE!!!
Challenging direct measurement due to the beam induced background produced by neutrons to measure with the highest precision.

The $^2\text{H}(^3\text{He},p)^4\text{He}$ could be used to subtract the beam induced background.

High statistic measurements with ^3He and ^4He are in progress.
The LUNA collaboration: