Recent results from the Pierre Auger Observatory

Hans Dembinskia for the Pierre Auger Collaboration

aKIT Karlsruhe
Outline

Direct observation
Indirect observation (air shower detectors)

Energy spectrum
Anisotropy
Mass composition
Hadronic interactions
Photons
Neutrinos

Pierre Auger Observatory + extensions AMIGA HEAT Radio
Pierre Auger Observatory

AMIGA Radio

Coihueco + HEAT

Malargüe, Argentina
1400 m a.s.l.

Los Morados

Loma Amarilla

Surface detector (SD)
1660 stations
Fluorescence detector (FD)
27 fluorescence telescopes

18 countries
70 institutes
~450 scientists

Exposure > 20000 km² sr yr
600 events / year > 10^{19} eV
15 events / year > 10^{19.7} eV
Measurement principle

Loma Amarilla

Coihueco

Los Morados

Los Leones

cross-calibrated to FD

Table:

<table>
<thead>
<tr>
<th>σ</th>
<th>SD</th>
<th>FD</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>10% - 20%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>22% (sys)</td>
<td>22% (sys)</td>
</tr>
<tr>
<td>X_{max}</td>
<td></td>
<td>20 g cm$^{-2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 g cm$^{-2}$ (sys)</td>
</tr>
<tr>
<td>θ, ϕ</td>
<td>0.5° - 2°</td>
<td>0.6°</td>
</tr>
</tbody>
</table>

Duty cycle

100 %

13 %
Energy spectrum

Physics Letters B 2010

- Auger
 flux corrected for detector smearing effects (unfolding)

SD flux σ_{sys} 6 %
FD flux σ_{sys} <10 %

flux in agreement if
Auger energy +16 %
or
HiRes energy −16 %
Anisotropy

sky map of CR arrival directions in galactic coordinates

active galaxies closer than 75 Mpc from Véron-Cetty & Véron catalogue

color indicates exposure

Auger SD data
69 events with $E > 10^{19.7}$ eV (data up to end of 2009)

21 correlations out of 55 events

$P(\text{data|isotropy}) = 0.3\%$ (not $P(\text{isotropy|data})$)

Correlation signal became weaker
No strong correlation with other catalogs
Auto-correlation not conclusive
Some excess near Centaurus A
Mass composition: FD

\[\langle X_{\text{max}} \rangle = \alpha (\ln E - \langle \ln A \rangle) + \beta \]

Elongation rate (no \(\beta \)-dependency)

\[D_{10} = \frac{d\langle X_{\text{max}} \rangle}{d \ln E} \approx \alpha \left(1 - \frac{d\langle \ln A \rangle}{d \ln E} \right) \ln(10) \]

sudden change at \(10^{18.24} \) eV suggests change in \(\frac{d\langle \ln A \rangle}{d \ln E} \)

\[\text{RMS}(X_{\text{max}})^2 = \text{RMS}^2(\text{depth of first interaction}) + \text{RMS}^2(\text{shower development}) \]

data suggests transition from light/mixed to heavy composition or drastic change in hadronic interactions
Mass composition: SD

- Rise time
- XAsymMax = \ln(\sec(\theta)) of max. radial signal asymmetry
- \(X_{\text{max}}\) affects some secondary SD observables
 \(\rightarrow\) more events, less resolution

\(X_{\text{max}}\) affects some secondary SD observables

energies used in anisotropy study

Cross-calibrated to \(X_{\text{max}}\):

- XAsymMax
- Rise time (relative to benchmark)

Signal trace recorded in every SD station

Proton QGSJETII03
Fe QGSJETII03
Proton SIBYLL2.1
Fe SIBYLL2.1
Auger - ICRC2007
XAsymMax
Rise time

\(X_{\text{max}}\) affects some secondary SD observables

\(\rightarrow\) more events, less resolution

\(10\% \quad 50\%\)
Hadronic interactions

Air showers → soft QCD at E_{cm} > 100 TeV
No theoretical framework, models are based on phenomenology and extrapolations

Investigate connection
\(X_{\text{max}}, N_e, N_\mu \) (Mean, RMS) ↔ cross-section, multiplicity, elasticity, A

\[
\langle X_{\text{max}} \rangle \quad \text{X-section, multiplicity, elasticity}
\]
\[
\text{RMS}(X_{\text{max}}) \quad \text{X-section}
\]
\[
\langle N_e \rangle \quad \text{X-section, multiplicity, elasticity}
\]
\[
\text{RMS}(N_e) \quad \text{X-section, multiplicity}
\]
\[
\langle N_\mu \rangle \quad \pi^{+/0} \text{ ratio, \textit{multiplicity}}
\]
\[
\text{RMS}(N_\mu) \quad \text{elasticity}
\]

\(N_\mu \) can be observed with SD at \(\theta > 60^\circ \), shape information in signal traces & AMIGA

Unfortunately, \(\langle \ln A \rangle \) seems to change, too → need to separate effects or do combined fit

\(f_{19} \) energy dependent scale factor

Muon excess

Considerably more muons found in data than in air shower simulations

- Hybrid event re-simulation (SD, FD)
- Shower universality (SD, ⟨FD⟩)
- Signal trace: muon jump method (SD)
- Signal trace: smoothing method (SD)

AMIGA will investigate radial muon distribution

All methods based partly on simulations, different systematics, compatible results

QGSJET II-3/iron
QGSJET II-3/proton

N_{\mu^\pm}^{rel.} (1000 \text{ m}) at 10 \text{ EeV}

Energy scale rel. to FD
Photon searches

Ultra-high energy photons vs. hadrons
Photon-air cross section is smaller
→ deeper X_{max}, very few muons
Smaller theoretical uncertainties!

Discriminants
FD: X_{max}
SD: rise time & shower front curvature
(combined with principal component analysis)
Photon limits

Neutrino limits

Look for very deeply penetrating showers with active em-component at ground level

assumptions:
\[\nu - \text{flux} \propto E^{-2} \]
\[\nu_e : \nu_\mu : \nu_\tau = 1:1:1 \]

\(\nu \)-exposure computed with simulations (largest source of uncertainty)
Summary and outlook

Energy spectrum ++
Reduce energy scale systematics
To come: low energy extension (HEAT, AMIGA)

Anisotropy +?
Analyses ready, waiting for data...

Mass composition ++
FD ++
SD?
To come: low energy extension (HEAT, AMIGA)

Hadronic interactions ?

Photon limits ++
Reducing systematics, increase efficiency

Neutrino limits ++
Reducing systematics, increase efficiency
AMIGA

Auger Muon and Infill Ground Array (AMIGA)
low energy extension 10^{17} eV < E < 10^{18} eV + dedicated muon counters
Part of 750m-Infill takes data since 2008, muon counters to come

30 m² scintillators buried 2.25 m deep
DAQ coupled to standard Infill stations
HEAT
High Elevation Auger Telescopes (HEAT)
low energy extension 10^{17} eV < E < 10^{18} eV
DAQ since 2009
Backup
FD exposure

![Graph showing data and MC results for FD exposure across different energy ranges.](image)

- **Data:** $18.0 < \log_{10} (E/eV) < 18.5$
- **Data:** $18.5 < \log_{10} (E/eV) < 19.0$
- **MC:** $18.0 < \log_{10} (E/eV) < 18.5$
- **MC:** $18.5 < \log_{10} (E/eV) < 19.0$

![Exposure vs. log_{10} (E/eV) for proton and iron.](image)

- **Exposure [km^2 sr yr]**
 - **Proton**
 - **Iron**

![Relative difference across core-telescope distance.](image)

- **Core-telescope distance [km]**
- **log_{10} (E/eV)**
Anisotropy

Cen-A study

Two point auto-correlation
Rise time and XAsymMax

\[t_{ij} \approx (0.00053 \pm 0.00008) x_{\text{max}}^{-4.0 \pm 0.6} \]

\[\chi^2/\text{NDF} = 0.45 \]

Probability = 0.87

1.00 \leq \sec \theta \leq 1.40
Hadronic model influence

Proton

Iron

Mean X_{max} [g/cm2]
RMS X_{max} [g/cm2]

f_{19}