Beyond the Standard Model: Dark Matter in the Early Universe and Today

Brian Fields
University of Illinois
PANIC 2008 - Eliat, Israel - Nov 13 2008

Richard Cyburt
Michigan State U.
Tijana Prodanovic
U. Novi Sad
Vassilis Spanos
U. Patras
Vasiliki Pavlidou
U. Chicago
Themis Athanassiadou
U. Illinois
Amy Lien
U. Illinois
Keith Olive, Evan Skillman
U. Minnesota
John Ellis
PANIC 2008

CERN
The Standard Cosmology:
Hot Big Bang Model

Friedmann-Lemaitre-Robertson-Walker

Gravity = General Relativity
Space: Homogeneous & Isotropic

- Expanding Universe
 \(t \approx 14 \text{ Gyr}; T \approx 10^{-4} \text{ eV} \)

- Cosmic Microwave Background (CMB)
 \(t \approx 400,000 \text{ yr}; T \approx 1 \text{ eV} \)

- Big-Bang Nucleosynthesis (BBN)
 \(t \approx 1 \text{ sec}; T \approx 1 \text{ MeV} \)

- Dark Matter

- Dark Energy
The Standard Cosmology: Hot Big Bang Model

Friedmann-Lemaitre-Robertson-Walker

Gravity = General Relativity
Space: Homogeneous & Isotropic

- Expanding Universe
t\sim 14 \text{ Gyr}; \text{T} \sim 10^{-4} \text{ eV}

- Cosmic Microwave Background (CMB)
t\sim 400,000 \text{ yr}; \text{T} \sim 1 \text{ eV}

- Big-Bang Nucleosynthesis (BBN)
t\sim 1 \text{ sec}, \text{T} \sim 1 \text{ MeV}

- Dark Matter

- Dark Energy

Freedman et al. 2001
The Standard Cosmology:
Hot Big Bang Model

Friedmann-Lemaitre-Robertson-Walker

Gravity = General Relativity
Space: Homogeneous & Isotropic

- Expanding Universe
 \(t \approx 14 \text{ Gyr}; T \approx 10^{-4} \text{ eV} \)

- Cosmic Microwave Background (CMB)
 \(t \approx 400,000 \text{ yr}; T \approx 1 \text{ eV} \)

- Big-Bang Nucleosynthesis (BBN)
 \(t \approx 1 \text{ sec}, T \approx 1 \text{ MeV} \)

- Dark Matter

- Dark Energy
The Standard Cosmology:
Hot Big Bang Model

Gravity = General Relativity
Space: Homogeneous & Isotropic

- Expanding Universe
 \(t \approx 14 \text{ Gyr}; T \approx 10^{-4} \text{ eV} \)

- Cosmic Microwave Background (CMB)
 \(t \approx 400,000 \text{ yr}; T \approx 1 \text{ eV} \)

- Big-Bang Nucleosynthesis (BBN)
 \(t \approx 1 \text{ sec}, T \approx 1 \text{ MeV} \)

- Dark Matter

- Dark Energy
The Standard Cosmology: Hot Big Bang Model

Friedmann-Lemaitre-Robertson-Walker

Gravity = General Relativity
Space: Homogeneous & Isotropic

- Expanding Universe
 \[t \approx 14 \text{ Gyr}; \ T \approx 10^{-4} \text{ eV} \]

- Cosmic Microwave Background (CMB)
 \[t \approx 400,000 \text{ yr}; \ T \approx 1 \text{ eV} \]

- Big-Bang Nucleosynthesis (BBN)
 \[t \approx 1 \text{ sec}, \ T \approx 1 \text{ MeV} \]

- Dark Matter
- Dark Energy
The Standard Cosmology: Hot Big Bang Model

Friedmann-Lemaitre-Robertson-Walker

Gravity = General Relativity
Space: Homogeneous & Isotropic

• Expanding Universe
t~14 Gyr; T~10^{-4} eV

• Cosmic Microwave Background (CMB)
t~400,000 yr; T~1 eV

• Big-Bang Nucleosynthesis (BBN)
t~1 sec, T~1 MeV

• Dark Matter

• Dark Energy
The Standard Cosmology: Hot Big Bang Model

Gravity = General Relativity
Space: Homogeneous & Isotropic

- Expanding Universe
t~14 Gyr; T~10^{-4} eV

- Cosmic Microwave Background (CMB)
t~400,000 yr; T~1 eV

- Big-Bang Nucleosynthesis (BBN)
t~1 sec, T~1 MeV
 microphysics known

- Dark Matter

- Dark Energy
The Standard Cosmology: Hot Big Bang Model

Gravity = General Relativity
Space: Homogeneous & Isotropic

- Expanding Universe
t~14 Gyr; T~10^{-4} eV

- Cosmic Microwave Background (CMB)
t~400,000 yr; T~1 eV

- Big-Bang Nucleosynthesis (BBN)
t~1 sec, T~1 MeV

- Dark Matter

- Dark Energy

microphysics known

microphysics unknown
Big Bang Nucleosynthesis
Big Bang Nucleosynthesis

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae

Radiation dominates! \(\gamma, e^\pm, 3\nu\bar{\nu}\)

Matter: nuclear building blocks = “baryons” \(p, n\)

tiny baryon-to-photon ratio

\(\eta \equiv n_B/n_\gamma \sim 10^{-9}\)
Big Bang Nucleosynthesis

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae

Radiation dominates! $\gamma, e^\pm, 3\nu\bar{\nu}$

Matter: nuclear building blocks = “baryons” p, n

tiny baryon-to-photon ratio

(η ≡ $n_B/n_\gamma \sim 10^{-9}$)

Initial Conditions: $T >> 1$ MeV, $t << 1$ sec

n-p weak equilibrium:

$pe^- \leftrightarrow n\nu_e$

$ne^+ \leftrightarrow p\bar{\nu}_e$

neutron-to-proton ratio:

$n/p = e^{-(m_n-m_p)c^2/kT}$
Big Bang Nucleosynthesis

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae
Radiation dominates! $\gamma, e^{\pm}, 3\nu\bar{\nu}$
Matter: nuclear building blocks = “baryons” p, n
tiny baryon-to-photon ratio
(the only free parameter!)

$\eta \equiv n_B/n_\gamma \sim 10^{-9}$

Initial Conditions: $T >> 1$ MeV, $t<< 1$ sec
n-p weak equilibrium: $pe^{-} \leftrightarrow n\nu_{e}$
$ne^{+} \leftrightarrow p\bar{\nu}_{e}$

neutron-to-proton ratio:

$$n/p = e^{-(m_n-m_p)c^2/kT}$$

Weak Freezeout: $T \sim 1$ MeV, $t\sim 1$ sec

$\tau_{\text{weak}}(n \leftrightarrow p) > t_{\text{universe}}$

$$\left(\frac{n}{p}\right)_{\text{freeze}} \approx e^{-\Delta m/T_{\text{freeze}}} \sim \frac{1}{7}$$
Big Bang Nucleosynthesis

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae

Radiation dominates! $\gamma, e^\pm, 3\nu\bar{\nu}$
Matter: nuclear building blocks = “baryons” p, n
tiny baryon-to-photon ratio
(\text{the only free parameter!})

$\eta \equiv n_B/n_\gamma \sim 10^{-9}$

Initial Conditions: $T \gg 1 \text{ MeV}, t \ll 1 \text{ sec}$
n-p weak equilibrium: $pe^- \leftrightarrow n\nu_e$
$n_e^+ \leftrightarrow p\bar{\nu}_e$

neutron-to-proton ratio:
$$n/p = e^{-(m_n-m_p)c^2/kT}$$

Weak Freezeout: $T \sim 1 \text{ MeV}, t\sim1 \text{ sec}$

$t_{\text{weak}}(n \leftrightarrow p) > t_{\text{universe}}$

fix $\left(\frac{n}{p}\right)_{\text{freeze}} \approx e^{-\Delta m/T_{\text{freeze}}} \sim \frac{1}{7}$

Light Elements Born: $T \sim 0.07 \text{ MeV}, t \sim 3 \text{ min}$
reaction flow \rightarrow most stable

BBN Network

\rightarrow key reactions

All reactions measured in lab at relevant energies
Big Bang Nucleosynthesis

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae

Radiation dominates! $\gamma, e^\pm, 3\nu\bar{\nu}$

Matter: nuclear building blocks = “baryons” p, n

tiny baryon-to-photon ratio

$\eta \equiv n_B/n_\gamma \sim 10^{-9}$

Initial Conditions: $T >> 1 \text{ MeV}, \, t<< 1 \text{ sec}$

n-p weak equilibrium: $pe^- \leftrightarrow n\nu_e$

$ne^+ \leftrightarrow p\bar{\nu}_e$

neutron-to-proton ratio:

$n/p = e^{-(m_n-m_p)c^2/kT}$

Weak Freezeout: $T \sim 1 \text{ MeV}, \, t\sim 1 \text{ sec}$

$\tau_{\text{weak}}(n \leftrightarrow p) > t_{\text{universe}}$

fix $\left(\frac{n}{p}\right) \approx e^{-\Delta m/T_{\text{freeze}}} \sim \frac{1}{7}$

Light Elements Born: $T \sim 0.07 \text{ MeV}, \, t\sim 3 \text{ min}$

reaction flow most stable

essentially all $n\rightarrow^4\text{He}, \sim 24\% \text{ by mass}$

also: traces of $^3\text{He}, \, ^7\text{Li}$

BBN Network

All reactions measured in lab at relevant energies
Curve Widths: Theoretical uncertainty on nuclear cross sections

Cyburt, BDF, Olive 08
Cyburt 04
Coq et al 04
Serpico et al 05
Cyburt, BDF, Olive 01
Krauss & Romanelli 88
Smith, Kawano, Malaney 93
Hata et al 1995
Copi, Schramm, Turner 1995
Nollett & Burles 2000
CMB is exquisite “baryometer”

WMAP baryon density very precise

\[\Omega_B h^2_{100} = 0.0226 \pm 0.008 \]

\[\eta = (6.14 \pm 0.25) \times 10^{-10} \]

i.e., a 4% measurement!

New strategy to test BBN:

✓ use WMAP as BBN input
✓ predict all lite elements
 with appropriate error propagation
✓ compare with observations
CMB is exquisite “baryometer”

WMAP baryon density very precise

\[\Omega_B h^2_{100} = 0.0226 \pm 0.008 \]

\[\eta = (6.14 \pm 0.25) \times 10^{-10} \]

i.e., a 4% measurement!

New strategy to test BBN:

✓ use WMAP as BBN input
✓ predict all lite elements with appropriate error propagation
✓ compare with observations
Battle of the Baryons
New World Order
Cyburt, BDF, Olive 2003

CMB is exquisite “baryometer”
WMAP baryon density very precise

\[\Omega_B h_{100}^2 = 0.0226 \pm 0.008 \]
\[\eta = (6.14 \pm 0.25) \times 10^{-10} \]
i.e., a 4% measurement!

Dodelson & Hu 2003
CMB is exquisite “baryometer”

WMAP baryon density very precise

\[\Omega_\text{B} h^2 = 0.0226 \pm 0.008 \]
\[\eta = (6.14 \pm 0.25) \times 10^{-10} \]

i.e., a 4% measurement!

New strategy to test BBN:
CMB is exquisite “baryometer”

WMAP baryon density very precise

\[
\Omega_B h^2_{100} = 0.0226 \pm 0.008
\]
\[
\eta = (6.14 \pm 0.25) \times 10^{-10}
\]
i.e., a 4% measurement!

New strategy to test BBN:

\checkmark use WMAP \eta_{cmb} as BBN input
CMB is exquisite “baryometer”
WMAP baryon density very precise

$$\Omega_B h^2_{100} = 0.0226 \pm 0.008$$
$$\eta = (6.14 \pm 0.25) \times 10^{-10}$$
i.e., a 4% measurement!

New strategy to test BBN:
✓ use WMAPη_{cmb} as BBN input
✓ predict all lite elements
 with appropriate error propagation
✓ compare with observations
Battle of the Baryons: II
A Closer Look
Cyburt, BDF, Olive 2003

Cayrel talk

Heil talk

PANIC 20I
Battle of the Baryons: II
A Closer Look
Cyburt, BDF, Olive 2003

Predict:

BBN theory: abundances vs η

$\eta_{\text{cmb}} \rightarrow$ BBN+CMB abundances (blue)

Compare with Observations (yellow)
Battle of the Baryons: II
A Closer Look
Cyburt, BDF, Olive 2003

Predict:
BBN theory: abundances vs η

\[\text{WMAP} \eta_{\text{cmb}} \rightarrow \text{BBN+CMB abundances} \] (blue)

Compare with Observations (yellow)

Results:

- D agreement excellent: woo hoo!

Cayrel talk

Heil talk
Battle of the Baryons: II
A Closer Look
Cyburt, BDF, Olive 2003

Predict:
BBN theory: abundances vs η

$\text{WMAP} \eta_{\text{cmb}} \rightarrow \text{BBN+CMB abundances}$
(blue)

Compare with Observations (yellow)

Results:
- D agreement excellent: woo hoo!
- ^7Li discrepant: “Lithium Problem”
 - systematic errors in obs? Cayrel talk
 - nuclear uncertainties? …no!
 - new physics? primordial ^6Li? Heil talk
Dark Matter

$$\Omega_B = 0.044 \pm 0.004$$
$$\frac{\Omega_M}{\Omega_B} = \frac{\text{matter}}{\text{baryons}} = 5.9 \pm 0.3$$
Dark Matter

Pre-CMB Anisotropies:

BBN \rightarrow Dark Matter

WMAP finds:

★ $\Omega_B = 0.044 \pm 0.004$

★ $\frac{\Omega_M}{\Omega_B} = \frac{\text{matter}}{\text{baryons}} = 5.9 \pm 0.3$

Confirms & sharpens case for dark matter:

two kinds!
Dark Matter

Pre-CMB Anisotropies:
BBN → Dark Matter

WMAP finds:
★ \(\Omega_B = 0.044 \pm 0.004 \)
★ \(\frac{\Omega_M}{\Omega_B} = \frac{\text{matter}}{\text{baryons}} = 5.9 \pm 0.3 \)

Confirms & sharpens case for dark matter: two kinds!

Baryonic Dark Matter: \(\Omega_B \gg \Omega_{\text{lum}} \sim 0.007 \)

→ warm-hot IGM, Ly-alpha, X-ray gas
 Fukugita, Hogan, Peebles; Cen & Ostriker; Dave et al
Dark Matter

Pre-CMB Anisotropies:

BBN ➔ Dark Matter

WMAP finds:

★ $\Omega_B = 0.044 \pm 0.004$
★ $\frac{\Omega_M}{\Omega_B} = \frac{\text{matter}}{\text{baryons}} = 5.9 \pm 0.3$

Conirms & sharpens case for dark matter: two kinds!

Baryonic Dark Matter: $\Omega_B \gg \Omega_{\text{lum}} \sim 0.007$

⇒ warm-hot IGM, Ly-alpha, X-ray gas

Fukugita, Hogan, Peebles; Cen & Ostriker; Dave etal

Non-Baryonic Dark Matter: $\Omega_B \ll \Omega_M$

⇒ most of cosmic matter!

Intergalactic gas absorbs QSO backlight
Fang, Canizares, & Yao 07

Bullet Cluster
optical, X-rays=baryons (red), lensing=gravity (blue)
Non-Baryonic Dark Matter

Particle Candidates

the vast majority of dark matter is non-baryonic

but oscillation data show: not neutrinos!

exhausts known particle candidates!

Dark matter demands physics beyond particle Standard Model!
Non-Baryonic Dark Matter

Particle Candidates

the vast majority of dark matter is

non-baryonic

but oscillation data show: not neutrinos!

exhausts known particle candidates!

Dark matter demands physics beyond particle Standard Model!

Good news: particle Standard Model experimentally triumphant
but conceptually incomplete: cries out for a deeper theory!

~All such theories provide dark matter candidates

inner space/outer space link
early Universe as poor man’s accelerator
contrast with dark energy--no good theories “off the shelf”
Non-Baryonic Dark Matter

Particle Candidates

the vast majority of dark matter is non-baryonic

but oscillation data show: not neutrinos!

exhausts known particle candidates!

Dark matter demands physics beyond particle Standard Model!

Good news: particle Standard Model experimentally triumphant but conceptually incomplete: cries out for a deeper theory!

~All such theories provide dark matter candidates

inner space/outer space link

early Universe as poor man’s accelerator

contrast with dark energy--no good theories “off the shelf”

most popular (& most promising?) theory: Supersymmetry

boson-fermion symmetry: super-partners to all SM members
Non-Baryonic Dark Matter

Particle Candidates

the vast majority of dark matter is non-baryonic
but oscillation data show: not neutrinos!
exhausts known particle candidates!

Dark matter demands physics beyond particle Standard Model!

Good news: particle Standard Model experimentally triumphant but conceptually incomplete: cries out for a deeper theory!

~All such theories provide dark matter candidates
inner space/outer space link
early Universe as poor man’s accelerator
contrast with dark energy--no good theories “off the shelf”

most popular (& most promising?) theory: Supersymmetry

boson-fermion symmetry: super-partners to all SM members
lightest spartner stable excellent DM candidate
Supersymmetric Dark Matter & Big-Bang Nucleosynthesis

Supersymmetry scorecard:

• very predictive: precision calculations of laboratory processes, DM abundances
• but large parameter space for models
• experiments/cosmology have begun to rule out some

Currently favored scenarios

lightest SUSY particle (LSP) is dark matter...
...but next-lightest particle long-lived: \(\tau_{\text{nlp}} \sim 1 \times 10^6 \text{sec} \)
can decay during or after BBN!
Could Lithium Be SUSY-licious?

If
✓ the world is supersymmetric
✓ and nonbaryonic dark matter is the lightest SUSY particle

Then
‣ In Early U: SUSY cascade
‣ next-to-lightest particle can be long-lived
‣ hadrononic decays can erode 7Li, and make 6Li

Jedamzik, Pospelov, Cyburt et al, Khori et al

A SUSY solution to lithium problems?

In any case: illustrates tight links among nucleo-cosmo-astro-particle physics
Could Lithium Be SUSY-licious?

If
✓ the world is supersymmetric
✓ and nonbaryonic dark matter is the lightest SUSY particle

Then
✓ In Early U: SUSY cascade
✓ next-to-lightest particle can be long-lived
✓ hadronic decays can erode 7Li, and make 6Li

Jedamzik, Pospelov, Cyburt et al, Khori et al

A SUSY solution to lithium problems?

In any case: illustrates tight links among nucleo-cosmo-astro-particle physics
OUTLOOK

Convergence of Particle Physics and Cosmology

- successes of both point to larger, deeper picture
- theoretical & experimental progress linked

BBN & CMB: Gates to the Early Universe

- concordance: big bang working to $t \sim 1$ sec
- non-baryonic dark matter required
- must arise in physics beyond the Standard Model of particle physics

The Dark Matter Discovery Trifecta
Convergence of Particle Physics and Cosmology

- successes of both point to larger, deeper picture
- theoretical & experimental progress linked

BBN & CMB: Gates to the Early Universe

- concordance: big bang working to t~1 sec
- non-baryonic dark matter required
- must arise in physics beyond the Standard Model of particle physics

The Dark Matter Discovery Trifecta

- underground direct detection
Convergence of Particle Physics and Cosmology

- successes of both point to larger, deeper picture
- theoretical & experimental progress linked

BBN & CMB: Gates to the Early Universe

- concordance: big bang working to $t\sim 1$ sec
- non-baryonic dark matter required
- must arise in physics beyond the Standard Model of particle physics

The Dark Matter Discovery Trifecta

- underground direct detection
- LHC@CERN: recreate dark matter and/or SUSY
OUTLOOK

Convergence of Particle Physics and Cosmology

- successes of both point to larger, deeper picture
- theoretical & experimental progress linked

BBN & CMB: Gates to the Early Universe

- concordance: big bang working to $t \sim 1$ sec
- non-baryonic dark matter required
- must arise in physics beyond the Standard Model of particle physics

The Dark Matter Discovery Trifecta

- underground direct detection
- LHC@CERN: recreate dark matter and/or SUSY
- gamma-ray signature: GLAST--now up & online!

Answers (& new surprises?) in <10 years!
OUTLOOK

Convergence of Particle Physics and Cosmology

- successes of both point to larger, deeper picture
- theoretical & experimental progress linked

BBN & CMB: Gates to the Early Universe

- concordance: big bang working to $t \sim 1$ sec
- non-baryonic dark matter required
- must arise in physics beyond the Standard Model of particle physics

The Dark Matter Discovery Trifecta

- underground direct detection
- LHC@CERN: recreate dark matter and/or SUSY
- gamma-ray signature: GLAST--now up & online!

Answers (& new surprises?) in <10 years!

Future exciting--stay tuned!
Non-Baryonic Dark Matter

Early Universe History

Birth

in hot early Universe $kT \gg m_\chi c^2$
dark matter particles χ, antiparticles $\bar{\chi}$ produced thermally
creation, annihilation rates balance

Midlife

universe cools until $kT < m_\chi c^2$ production stops
dark matter annihilates, abundance drops

Fossilization

annihilations freeze out
relic abundance fixed
weaker particles earlier freezeout larger relic abundance
$\Omega_\chi \sim \frac{1}{\sigma_{\text{weak}}}$ Weak (& SUSY) scale gives right amount of DM!
explains why DM = weakly interacting massive particles: WIMPs!
Dark Matter Discovery

Direct Detection

Earth and Sun move through “wind” of Galactic dark matter

If DM interactions ~ weak scale, detectable

Techniques similar to neutrino hunting

- small signal < 1 event/day
- need low background underground

Detectors: cryogenic crystals

Interaction: elastic scattering

Signals: crystal response to nuclear recoil

- vibration: phonons
- scintillation: photons
- heating: T rise and/or phase transition
Dark Matter Discovery

Direct Detection

Earth and Sun move through “wind” of Galactic dark matter

If DM interactions ~ weak scale, detectable

Techniques similar to neutrino hunting

 small signal < 1 event/day
 need low background underground

Detectors: cryogenic crystals

Interaction: elastic scattering

Signals: crystal response to nuclear recoil

 vibration: phonons
 scintillation: photons
 heating: T rise and/or phase transition

$\nu_\odot \sim 200 \text{ km/s}$
Dark Matter Discovery

Direct Detection

Earth and Sun move through “wind” of Galactic dark matter

If DM interactions \(\sim \) weak scale, detectable

Techniques similar to neutrino hunting

- small signal \(< 1 \text{ event/day}\)
- need low background \(\Rightarrow\) underground

\(v_\odot \sim 200 \text{ km/s} \)
Dark Matter Discovery

Direct Detection

Earth and Sun move through “wind” of Galactic dark matter

If DM interactions ~ weak scale, detectable

Techniques similar to neutrino hunting

- small signal < 1 event/day
- need low background underground

Detectors: cryogenic crystals

Interaction: elastic scattering $\chi + \text{nucleus}$

$v_\odot \sim 200 \text{ km/s}$
Dark Matter Discovery
Direct Detection

Earth and Sun move through “wind” of Galactic dark matter

If DM interactions ~ weak scale, detectable

Techniques similar to neutrino hunting
 small signal < 1 event/day
 need low background \rightarrow underground

Detectors: cryogenic crystals

Interaction: elastic scattering $\chi + \text{nucleus}$

Signals: crystal response to nuclear recoil
 vibration: phonons
 scintillation: photons
 heating: T rise and/or phase transition

$v_\odot \sim 200 \text{ km/s}$
Dark Matter Discovery
Laboratory Creation

Accelerators can create dark matter pairs in collisions with

Fermilab: running now

CERN (Geneva):
- Large Hadronic Collider
- coming online this Spring
- can probe most of Supersymmetry model space
- discover or rule out SUSY dark matter

If discover:
- can predict cosmic abundance, direct detection signature
Dark Matter Discovery

Gamma-Ray Observations

In many dark matter models: WIMPs & anti-WIMPS in equal numbers

Frozen out: annihilations too slow in average universe

but in high-density peaks, can find each other and annihilate

look for Gamma-ray signal from

✓ Galactic Center
✓ other galaxies
✓ nearby dark matter clumps
Dark Matter Discovery

Gamma-Ray Observations

In many dark matter models: WIMPs & anti-WIMPS in equal numbers

Frozen out: annihilations too slow in average universe
but in high-density peaks, can find each other and annihilate

look for Gamma-ray signal from

✓ Galactic Center
✓ other galaxies
✓ nearby dark matter clumps

GLAST: New window open in 2008
In many dark matter models: WIMPs & anti-WIMPS in equal numbers

Frozen out: annihilations too slow in average universe

but in high-density peaks, can find each other and annihilate

look for Gamma-ray signal from

✓ Galactic Center
✓ other galaxies
✓ nearby dark matter clumps

GLAST: New window open in 2008

If detect dark matter signature:

gamma signature probes WIMP mass

\[E_\gamma \leq m_\chi c^2 \]
The Standard Model of Particle Physics: Impressionist’s View

Inspiration: quantum E&M. Charged particles interact via photon exchange and generalize to other forces.

Structure: matter composed of fermions (spin-1/2) and force carriers (bosons, spin-1).

Predictive Power & Empirical Success. Organizes a mountain of data. E.g., ~130 observed qqq are baryonic states.

Of which 2 are stable: uud is p and udd is n.

Quantitatively explains observed properties. E.g., production/decay/scattering rates, daughter properties.

Crowning jewel: e magnetic moment to ~1 ppb. No known disagreement with experiment!
The Standard Model of Particle Physics: Impressionist’s View

• **Inspiration:** quantum E&M
 charged particles interact via photon exchange
generalize to other forces

• **Structure**
 matter: fermions (spin-1/2)
 force carriers: bosons (spin-1)

• **Predictive Power & Empirical Success**
 organizes a mountain of data
 • e.g., ~130 observed $qqq=$baryonic states
 • of which 2 are stable: $uud=p$ & $udd=n$
 quantitatively explains observed properties
 • e.g., production/decay/scattering rates, daughter properties
 • crowning jewel: e magnetic moment to ~1 ppb
 no known disagreement with experiment!
The Standard Model of Particle Physics: Impressionist’s View

- **Inspiration:** quantum E&M
 - charged particles interact via photon exchange
 - generalize to other forces

- **Structure**
 - matter: fermions (spin-1/2)
 - force carriers: bosons (spin-1)
The Standard Model of Particle Physics: Impressionist’s View

- **Inspiration**: quantum E&M
 charged particles interact via photon exchange
generalize to other forces

- **Structure**
 matter: fermions (spin-1/2)
 force carriers: bosons (spin-1)

- **Predictive Power & Empirical Success**
 organizes a mountain of data
 - e.g., ~130 observed qqq=baryonic states
 - of which 2 are stable: $uud=p$ & $udd=n$
The Standard Model of Particle Physics: Impressionist’s View

- **Inspiration**: quantum E&M
 charged particles interact via photon exchange
generalize to other forces

- **Structure**
 matter: fermions (spin-1/2)
 force carriers: bosons (spin-1)

- **Predictive Power & Empirical Success**
 organizes a mountain of data
 - e.g., ~130 observed qqq=baryonic states
 - of which 2 are stable: $uud=p$ & $udd=n$
 quantitatively explains observed properties
 - e.g., production/decay/scattering rates, daughter properties

[Diagram of elementary particles and quark generations]
The Standard Model of Particle Physics: Impressionist’s View

- **Inspiration:** quantum E&M
 charged particles interact via photon exchange
 generalize to other forces

- **Structure**
 matter: fermions (spin-1/2)
 force carriers: bosons (spin-1)

- **Predictive Power & Empirical Success**
 organizes a mountain of data
 - e.g., ~130 observed \(qqq \) = baryonic states
 - of which 2 are stable: \(uud = p \) & \(udd = n \)
 quantitatively explains observed properties
 - e.g., production/decay/scattering rates, daughter properties
 - crowning jewel: e magnetic moment to ~1 ppb
The Standard Model of Particle Physics: Impressionist’s View

• Inspiration: quantum E&M
 charged particles interact via photon exchange
generalize to other forces

• Structure
 matter: fermions (spin-1/2)
 force carriers: bosons (spin-1)

• Predictive Power & Empirical Success
 organizes a mountain of data
 • e.g., ~130 observed \(qqq \)=baryonic states
 • of which 2 are stable: \(uud=\text{p} \) & \(udd=\text{n} \)
 quantitatively explains observed properties
 • e.g., production/decay/scattering rates, daughter properties
 • crowning jewel: e magnetic moment to ~1 ppb
 no known disagreement with experiment!

PANIC 2008
If it ain’t broke why fix it?

➡️ Standard Model can’t be the final theory
➡️ Open questions remain

 SM has ~29 independent (?) parameters
 • what sets them? are they related?

 Why families? How many?

 Neutrinos: number of species? Masses?
 Boson/fermion dichotomy?
 Unification of forces?
If it ain’t broke why fix it?

➡ Standard Model can’t be the final theory
➡ Open questions remain
 SM has ~29 independent (?) parameters
 • what sets them? are they related?
 Why families? How many?
 Neutrinos: number of species? Masses?
 Boson/fermion dichotomy?
 Unification of forces?
➡ The game: invent larger framework which
If it ain’t broke why fix it?

➡️ Standard Model can’t be the final theory
➡️ Open questions remain
 SM has ~29 independent (?) parameters
 • what sets them? are they related?
 Why families? How many?
 Neutrinos: number of species? Masses?
 Boson/fermion dichotomy?
 Unification of forces?
➡️ The game: invent larger framework which
 inherits all of SM successes
If it ain’t broke why fix it?

- **Standard Model can’t be the final theory**
- **Open questions remain**
 - SM has ~29 independent (?) parameters
 - what sets them? are they related?
 - Why families? How many?
 - Neutrinos: number of species? Masses?
 - Boson/fermion dichotomy?
 - Unification of forces?
- **The game: invent larger framework which**
 - inherits all of SM successes
 - addresses some/all of these questions
If it ain’t broke why fix it?

➡ Standard Model can’t be the final theory
➡ Open questions remain

SM has ~29 independent (?) parameters
 • what sets them? are they related?

Why families? How many?
Neutrinos: number of species? Masses?
Boson/fermion dichotomy?
Unification of forces?

➡ The game: invent larger framework which
inherits all of SM successes
addresses some/all of these questions
doesn’t violate existing data
If it ain’t broke why fix it?

➡ Standard Model can’t be the final theory
➡ Open questions remain
 SM has ~29 independent (?) parameters
 • what sets them? are they related?
 Why families? How many?
 Neutrinos: number of species? Masses?
 Boson/fermion dichotomy?
 Unification of forces?
➡ The game: invent larger framework which
 inherits all of SM successes
 addresses some/all of these questions
 doesn’t violate existing data
 predicts results of future experiments
If it ain’t broke why fix it?

➡ Standard Model can’t be the final theory
➡ Open questions remain

 SM has ~29 independent (?) parameters
 • what sets them? are they related?

Why families? How many?
Neutrinos: number of species? Masses?
Boson/fermion dichotomy?
Unification of forces?

➡ The game: invent larger framework which

 inherits all of SM successes
 addresses some/all of these questions
 doesn’t violate existing data
 predicts results of future experiments

➡ All new models predict new particles relevant to cosmology!
Cosmic Job Security: Precision Ignorance

What is the dark matter?
- how is it produced?
- how does it interact?
- what was its role in the early universe?

What is the dark energy?
- is it related to dark matter?
- does it evolve with time?
- what was its role in the early universe?

What sets \(\Omega_{\text{baryon}} \sim \Omega_{\text{matter}} \sim \Omega_{\Lambda} \) today?
- compare: nuclear physics sets \(\Omega_{\text{H}} \sim \Omega_{\text{He}} \)
Big Bang Nucleosynthesis
& Particle Dark Matter

- The State of the Art
 - Standard Model of Particle Physics
 - Standard Cosmology

- Big Bang Nucleosynthesis
 & non-baryonic dark matter

- Particle Dark Matter
 candidates & interplay with BBN

- Dark Matter Discovery Scenarios
 accelerators, direct detection, gamma rays
Big Bang Nucleosynthesis
Standard BBN

Marriage of Standard Model and Standard Cosmology

- Gravity = General Relativity
- Microphysics: Standard Model of Particle Physics
 - $N_\nu = 3$ neutrino species
 - $m_\nu \ll 1 \text{ MeV}$
 - left-handed neutrino couplings only
- Dark Matter and Dark Energy
 - Present (presumably) but non-interacting
- Homogeneous U. spatially const
- Expansion adiabatic

$$\eta \equiv \frac{n_{\text{baryon}}}{n_\gamma}$$

$$\left(\frac{n_B}{n_\gamma} \right)_{\text{BBN}} = \left(\frac{n_B}{n_\gamma} \right)_{\text{CMB}} = \left(\frac{n_B}{n_\gamma} \right)_{\text{today}}$$

- gives baryon density $\eta \propto \rho_{B,\text{today}} \propto \Omega_B$
BBN Observations: Case Study
Primordial Deuterium

Q1422+2309 $z=3.62$
BBN Observations: Case Study

Primordial Deuterium

- High-redshift quasar=light bulb
BBN Observations: Case Study
Primordial Deuterium

- High-redshift quasar = light bulb
- Intervening H gas absorbs at $\text{Ly}\alpha (n = 1 \rightarrow n = 2)$
BBN Observations: Case Study
Primordial Deuterium

- High-redshift quasar = light bulb
- Intervening H gas absorbs at $\text{Ly} \alpha (n = 1 \rightarrow n = 2)$
BBN Observations: Case Study
Primordial Deuterium

- High-redshift quasar = light bulb
- Intervening H gas absorbs at $Ly\alpha (n = 1 \rightarrow n = 2)$
- Observed spectrum: Ly-alpha “forest”
Deuterium Data

Deuterium Ly-alpha shifted from H:

\[E_{\text{Ly}\alpha} = \frac{1}{2} \alpha^2 \mu_{\text{reduced}} \]
\[\frac{\delta \lambda_D}{\lambda_D} = -\frac{\delta \mu_D}{\mu_D} = -\frac{m_e}{2m_p} \]
\[c\delta z = 82 \text{ km/s} \]

Get D directly at high-z!

Tytler & Burles
Testing BBN: Light Element Observations

Theory:
- 1 free parameter predicts
- 4 nuclides: D, 3He, 4He, 7Li
Testing BBN:
Light Element Observations

Theory:
- 1 free parameter predicts
- 4 nuclides: 2D, 3He, 4He, 7Li

Observations:
- 3 nuclides with precision: 2D, 4He, 7Li
Testing BBN:
Light Element Observations

Theory:
- 1 free parameter predicts
- 4 nuclides: D, ^3He, ^4He, ^7Li

Observations:
- 3 nuclides with precision: D, ^4He, ^7Li

Comparison:
- ★ each nuclide selects baryon density
Testing BBN: Light Element Observations

Theory:
- 1 free parameter predicts
- 4 nuclides: 1H, 3He, 4He, 7Li

Observations:
- 3 nuclides with precision: 1H, 4He, 7Li

Comparison:
- Each nuclide selects baryon density
- Overconstrained--nontrivial test!

Result:
Testing BBN:
Light Element Observations

Theory:
- 1 free parameter predicts
- 4 nuclides: D, 3He, 4He, 7Li

Observations:
- 3 nuclides with precision: D, 4He, 7Li

Comparison:
- Each nuclide selects baryon density
- Overconstrained--nontrivial test!

Result:
- Broad concordance!
- Cosmological confidence at t~1 sec
- Measures baryon content of Universe
The CMB: A Powerful New Baryometer

\[\text{CMB} \Delta T_\ell \text{ independent measure of } \Omega_B \]

BBN vs CMB: fundamental test of cosmology

Dodelson & Hu 2003
Non-Baryonic Dark Matter: Neutrinos?

Required Dark Matter Properties

dark \rightarrow \text{feeble interactions}

\text{matter} \rightarrow \text{has mass}

\text{present at } t \sim 14 \text{ Gyr} \rightarrow \text{stable}

\text{inert @ BBN, recomb} \rightarrow \text{non-baryonic}

\text{abundant: } \Omega_m \simeq 0.3
Non-Baryonic Dark Matter: Neutrinos?

Required Dark Matter Properties

dark \rightarrow feeble interactions
matter \rightarrow has mass
present at $t \sim 14$ Gyr \rightarrow stable
inert @ BBN, recomb \rightarrow non-baryonic
abundant: $\Omega_m \sim 0.3$

Consult Standard Model
neutrinos very promising!

✓ massive
✓ stable
✓ weakly interacting
✓ not quarks \rightarrow not baryons
Non-Baryonic Dark Matter: Neutrinos?

Neutrino densities today

- **number**: \(n_\nu = \frac{3}{11} N_\nu n_\gamma \approx 350 \) neutrinos cm\(^{-3}\)
- **mass**: \(\rho_\nu = \sum m_\nu n_\nu \)
- **cosmic contribution**: \(\Omega_\nu = \frac{\sum m_\nu}{46 \text{ eV}} \)

All hangs on neutrino masses
Non-Baryonic Dark Matter: Neutrinos?

Neutrino densities today

- **number:** \(n_\nu = \frac{3}{11} N_\nu n_\gamma \simeq 350 \text{ neutrinos cm}^{-3} \)
- **mass:** \(\rho_\nu = \sum m_\nu n_\nu \)
- **cosmic contribution:** \(\Omega_\nu = \frac{\sum m_\nu}{46 \text{ eV}} \)

All hangs on neutrino masses

...which we don’t know
Non-Baryonic Dark Matter: Neutrinos?

Neutrino densities today

- **number:** \(n_\nu = \frac{3}{11} N_\nu n_\gamma \simeq 350 \text{ neutrinos cm}^{-3} \)
- **mass:** \(\rho_\nu = \sum m_\nu n_\nu \)
- **cosmic contribution:** \(\Omega_\nu = \frac{\sum m_\nu}{46 \text{ eV}} \)

All hangs on neutrino masses

...which we don’t know

But we know enough:

mass differences (from oscillations)
Non-Baryonic Dark Matter: Neutrinos?

Neutrino densities today

- number: \(n_\nu = \frac{3}{11} N_\nu n_\gamma \approx 350 \) neutrinos cm\(^{-3}\)
- mass: \(\rho_\nu = \sum m_\nu n_\nu \)
- cosmic contribution: \(\Omega_\nu = \frac{\sum m_\nu}{46 \text{ eV}} \)

All hangs on neutrino masses

...which we don’t know

But we know enough:

- mass differences (from oscillations)
 \[m(\nu_e) \leq 2 \text{ eV} \] (from beta decays)
Non-Baryonic Dark Matter: Neutrinos?

Neutrino densities today

- **number:** $n_\nu = \frac{3}{11} N_\nu n_\gamma \simeq 350$ neutrinos cm$^{-3}$
- **mass:** $\rho_\nu = \sum m_\nu n_\nu$
- **cosmic contribution:** $\Omega_\nu = \frac{\sum m_\nu}{46 \text{ eV}}$

All hangs on neutrino masses

...which we don’t know

But we know enough:

- mass differences (from oscillations)
 $m(\nu_e) \leq 2 \text{ eV}$ (from beta decays)
- $\sum m_\nu \leq 2 \text{ eV}$ (from large-scale structure)
Non-Baryonic Dark Matter: Neutrinos?

Neutrino densities today

- **number:** \(n_\nu = \frac{3}{11} N_\nu n_\gamma \approx 350 \text{ neutrinos cm}^{-3} \)
- **mass:** \(\rho_\nu = \sum m_\nu n_\nu \)
- **cosmic contribution:** \(\Omega_\nu = \sum \frac{m_\nu}{46 \text{ eV}} \)

All hangs on neutrino masses

...which we don’t know

But we know enough:

- mass differences (from oscillations)
 \(m(\nu_e) \leq 2 \text{ eV} \) (from beta decays)

- \(\sum m_\nu \leq 2 \text{ eV} \) (from large-scale structure)

Total density contribution: \(\Omega_\nu \leq 0.1 \Omega_m \)
Non-Baryonic Dark Matter: Neutrinos?

Neutrino densities today

- **number:** \(n_\nu = \frac{3}{11} N_\nu n_\gamma \sim 350 \text{ neutrinos cm}^{-3} \)
- **mass:** \(\rho_\nu = \sum m_\nu n_\nu \)
- **cosmic contribution:** \(\Omega_\nu = \frac{\sum m_\nu}{46 \text{ eV}} \)

All hangs on neutrino masses

...which we don’t know

But we know enough:

- mass differences (from oscillations)
 \(m(\nu_e) \leq 2 \text{ eV} \) (from beta decays)
- \(\sum m_\nu \leq 2 \text{ eV} \) (from large-scale structure)

Total density contribution: \(\Omega_\nu \leq 0.1 \Omega_\text{m} \)

Neutrinos are not the dark matter

\(\Omega_\nu = \sum m_\nu n_\nu \)

\(\rho_\nu = \frac{\sum m_\nu}{46 \text{ eV}} \)

The Sun, imaged in neutrinos
SuperKamiokande

KamLAND Reactor Neutrino Detector
BBN+CMB: A Shaper Probe of Particle Physics

Example: “Neutrino Counting"

Predicted Lite elements sensitive to expansion history during BBN

\[(\text{expansion})^2 = H^2 \sim G\rho_{\text{tot,rel}}\]

Observed Lite Elements Constrain Relativistic Energy Density: Stiegman, Schramm, & Gunn 77

\[\rho_{\text{tot,rel}} = \rho_{\text{EM}} + \left(\overline{N}_0,_{\text{eff}}\right)\rho_{\nu\bar{\nu}}\]

Pre-CMB:

4He as probe, other elements give baryon density

With η from CMB

- All abundances probe

 \[\delta N_{\nu,\text{bbn}} \equiv N_\nu - 3 < 1.6\]

- Now: 4He sharpest probe, but syst errors?

- Future: If get D/H to 3%Get best leverage Cyburt, BDF, & Olive 02; Cyburt et al 2006

- Observational errors dominate!

\[\delta N_{\nu,\text{bbn}} \equiv N_\nu - 3 < 1.6\]

WMAP+BBN+D/H limits

Cyburt, BDF, Olive, & Skillman 2004
The Lithium Problem
Primordial Lithium

Observe in primitive (Pop II) stars
Li-Fe → evolution

Plateau at low Fe
★ const. abundance at early epochs
★ Li is primordial

But is the plateau at Li_p?
• Li_{WMAP}/Li_{obs} \sim 3
• Why?

Also: Recent hints of primordial 6Li $>>$ 6Li_{SBBN}?!
Primordial Lithium

Observe in primitive (Pop II) stars
Li-Fe evolution

Plateau at low Fe
★ const. abundance at early epochs
★ Li is primordial

But is the plateau at Li_p?
• $\text{Li}_{\text{WMAP}} / \text{Li}_{\text{obs}} \sim 3$
• Why?

Also: Recent hints of primordial $^6\text{Li} >> ^6\text{Li}_{\text{SBBN}}$?
BBN vs WMAP

Can view WMAP as “tiebreaker”

- D and 4He in great shape
- Possible problems with 7Li

Sources of Discrepancy

1. Astrophysics: observational systematics?
2. Nuclear Physics: nuclear reaction systematics?
3. Nonstandard Physics: most intriguing, but last resort
Lithium Systematic Errors
Observational Systematics

Measure: $\text{Li I} = \text{Li}^0$ absorption line(s)
Infer: Li/H
T_{eff} critical: mostly $\text{Li II} = \text{Li}^+\text{I}$
Needed error in T scale $\sim 500 \text{ K}$: large!
But maybe possible: Melendez & Ramirez 04; BDF, Olive, Vangioni-Flam 05

Astrophysical Systematics

stellar depletion over $\sim 10^{10}$ yr
if Li burned: correct Li_p upward!
But: no Li scatter, and ^6Li preserved... Ryan et al 2000

Nuclear Systematics

^7Li production channel $^3\text{He}(\alpha, \gamma)^7\text{Be}$
Normalization error?
But: also key for Solar neutrinos
The Sun as reactor: SNO+Solar Model success
no “nuke fix” to Li problem Cyburt, BDF, Olive 04