Towards Antihydrogen Confinement with the ALPHA Trap

Eli Sarid
NRCN, Israel
and the ALPHA Collaboration

PANIC 2008
Toward Antihydrogen Confinement in the ALPHA Trap

PAN IC2008 Eilat

Eli Sarid

Project ALPHA Collaboration

University of Aarhus: G. Andersen, P.D. Bøwe, J.S. Hangst
RIKEN: Y. Yamazaki
Federal University of Rio de Janeiro: C.L. Cesar, D. Miranda
University of Tokyo: R. Funakoshi, R.S. Hayano
University of Wales, Swansea: M. Charlton, N. Madsen, L. V. Jørgensen, M. Jenkins, H.H. Telle, D.P. van der Werf
Auburn University: F. Robicheaux
University of California, Berkeley: W. Bertsche, S. Chapman, J. Fajans, A. Povilus, J. Wurtele
Nuclear Research Centre, Negev, Israel: E. Sarid
University of Liverpool: A. Boston, M. Chartier, P. Nolan, R.D. Page, P. Pusa
University of British Columbia: S. Seif El Nasr, D.J. Jones, W.N. Hardy
University of Calgary: R. Hydomako, R.I. Thompson
Université de Montréal: J.-P. Martin
Simon Fraser University: M. Dehghani, M. Hayden
York University: H. Malik, S. Menary
The dream - Antihydrogen Spectroscopy

1s-2s two-photon spectroscopy

- Doppler effect cancels
- High precision in matter sector
- Test of CPT theorem

\[f(1S-2S) = 2\,466\,061\,102\,474\,851(34)\,\text{Hz} \] - Hänsch group

Toward Antihydrogen Confinement in the ALPHA Trap | PAN IC2008 Eilat | Eli Sarid
The dream - Antihydrogen Spectroscopy

1s-2s two-photon spectroscopy

If antihydrogen can be trapped, any type of spectroscopic measurement can be contemplated

- Doppler effect cancels
- High precision in matter sector
- Test of CPT theorem

\[f(1S-2S) = 2 466 061 102 474 851(34) \text{ Hz} \] - Hänsch group

Toward Antihydrogen Confinement in the ALPHA Trap PAN IC2008 Eilat Eli Sarid
Hbar Formation mechanism:

- Radiative recombination
 - Binding E. deep; Formation rates low, $\sim T^{-0.6}$
- Three-body recombination
 - Binding E. shallow; Formation rate high, $\sim T^{-4.5}$
Remember ATHENA

Toward Antihydrogen Confinement in the ALPHA Trap

PAN IC2008 Eilat Eli Sarid
Antihydrogen Production

Superimpose Magnetic Trap

\[U = -\mu B \]

0.7 K/T per Bohr magneton
Plasma stability

\[P_\theta \approx \frac{e}{2c} B \sum_{i=1}^{N} r_i^2 \]

- Magnetic trap field strongly breaks the symmetry

Radial B field
Octupole vs Quadrupole

- Use Octupole instead of Quadrupole
- Perturbation near axis much reduced
- Need trap walls close to the magnet
Radially, \[\Delta B = \sqrt{B_s^2 + B_w^2} - B_s \]
Toward Antihydrogen Confinement in the ALPHA Trap

ALPHA Apparatus Overview

Mixing trap

Si tracker

e^+

P$ar{b}$
Plasma confinement in Octupole trap

- Antiprotons and positrons in 1.2 T octupole field
- Number of particles measured as a function of storage time
 - Demonstrate compatibility of Charged and neutral trap
FAST TRACK COMMUNICATION

Production of antihydrogen at reduced magnetic field for anti-atom trapping

G B Andresen¹, W Bertsche², A Boston³, P D Bowe¹, C L Cesar³, S Chapman², M Charlton¹, M Chartier³, A Deutsch²,³, J Fajans³, M C Fujiwara⁴, R Funakoshi⁵, D R Gill⁶, K Gomberoff⁷,⁸,¹⁴, J S Hanß³, R S Hayano⁴, R Hydomako⁶, M J Jenkins³, L V Jørgensen⁶, L Kurchaninov⁷, N Madsen⁶, P Nolan⁶, K Olehinski⁶, A Olsen⁵, R D Page³, A Powell⁶, F Robicheaux⁹, L Sarid¹⁰, D M Silva³,⁶, J W Storey⁴, R I Thompson⁷, D P van der Werf³, J S Würtele³ and Y Yamazaki¹¹

Figure 4. Scintillation events as a function of time after the start of mixing, for normal mixing (black) and mixing with heated positrons (red). The time bins are 1 s long. The data are for 10 mixing cycles, normalized to one cycle. The inset is a plot of the first 5 s of the same data, re-binned into 200 ms bins to illustrate the rise time of the antihydrogen production. The uncertainties reflect counting statistics only (1 standard deviation).
Plasma radial control important

- Recall $E \propto en_e r^2$

External rotating RF field exerts torque on plasma \rightarrow radial compression

What’s new?

- Normally need coolant
- Use electrons as a coolant
Annihilation Imaging Capability allows:
- Detection of antihydrogen
- Rapid diagnosis of system
- Ancillary measurements
 (e.g. plasmas in non-uniform B fields)

Essential for ALPHA:
- Antihydrogen trapping detection and spectroscopy
- Need compatibility with the neutral trap
Si Tracker Status

- Oct-Nov 2007
 6 modules *in situ* test
- June 2008
 38 module out of 60
 being commissioned
“Ballistic” particle loss in octupole field due to symmetry breaking

- Annihilations gives unique signatures
 - Enhanced at trap edges
 - 4 hot spots at each end

\[\Rightarrow \text{Not yet definitive proof of ballistic loss} \]

Result from Oct 07 commissioning
Fresh New Data on Ballistic Loss

Preliminary

Counts

Azimuthal angle (deg)

Axial position (cm)

X-Y Projection (cm)
Fresh New Data on Ballistic Loss

- Preliminary
- Confirms ballistic loss model
- Powerful diagnosis

Axial position (cm)

Counts

Azimuthal angle (deg)

X-Y Projection (cm)
Neutral (Hbar) versus charged (pbar) losses

Preliminary

Hbar annihilations on the walls: uniform phi-distribution
Trapped Antihydrogen Detection Method

- Make antihydrogen in magnetic trap
- Remove charged particles by electric field
- Dump the magnetic trap using fast IGBT switch
- Look for annihilation events from escaping neutrals hitting the trap walls
- Fast dumping crucial to fight the background

Octupole current decay
Characteristic energy scales:

- Plasma energy: space charge \((\propto e n_e r^2) \approx 10\) eV
- Neutral trap depth: \((\mu \Delta B) \approx 0.1\) meV
- Need \(10^{-5}\) control of plasma to make cold enough H\(\bar{e}\)ar!

Optimizations in particle moving and shaking:

- \(\sim 40\) potentials, time scale, particle numbers
- Largely systematic trial and error.

Antihydrogen quantum states:

- Formation process still not well understood
Summary and Prospects

– Antihydrogen trapping and spectroscopy: challenging goal
– ALPHA making progress
 – Nearly all parts constructed within 1st year
 – Si tracker finally coming along
 – Physics results coming out
 – Started campaigns of trapping attempts
 – Exciting time ahead for antihydrogen physics!