Supernovae as Nuclear and Particle Physics Laboratories

M. Liebendörfer
University of Basel

- Introduction: Core-collapse supernova explosions
- The role of cold, ordered nuclear matter for the collapse phase and the emission of gravitational waves
- The role of hot high-density matter for the postbounce phase and the emission of neutrinos
- How would an early QCD phase transition impact SNe?
Supernova Observables

Gravitational waves
Neutron star kick and spin distributions
Gamma ray burst neutrino signal from interior

direct ejecta:
- composition
- velocity (spectra)
- asymmetry (polarization)

indirect ejecta
- mixing with ISM
- new star formation
- contamination of metal-poor stars
Supernova Observables

Gravitational waves
Neutron star kick and spin distributions
Gamma ray burst neutrino signal from interior

- direct ejecta:
 - composition
 - velocity (spectra)
 - asymmetry (polarization)

- indirect ejecta
 - mixing with ISM
 - new star formation
 - contamination of metal-poor stars

Stellar evolution
Supernova theory
Nuclear Physics
Hydrodynamics
Radiative transfer
Supernova Observables

Gravitational waves
Neutron star kick and spin distributions
Gamma ray burst neutrino signal from interior
direct ejecta:
• composition
• velocity (spectra)
• asymmetry (polarization)
indirect ejecta
• mixing with ISM
• new star formation
• contamination of metal-poor stars

Galactic evolution
Stellar evolution
Supernova theory
Nuclear Physics
Hydrodynamics
Radiative transfer
Make extreme conditions of matter observable...
Iron core collapse

Overview of burning phases in stellar evolution

- Fusion in core reaches maximum binding energy per baryon
- There is a maximum stable mass: Chandrasekhar mass

(Heger & Woosley 2002, see also Hirschi, Meynet, Maeder 2005)
Delayed explosion: 4 phases

Ensemble of nuclei
Freeze-out of nuclei
Hot dissociated matter
Cool bulk nuclear matter
 Freeze-out of nuclei
Microscopic input physics

Weak interactions between neutrinos and matter (Bruenn, ApJS 58, 1985 and Refs. therein)

- Coherent scattering of neutrinos on nuclei
 \[\nu + (A, Z) \leftrightarrow \nu + (A, Z) \]
- Ion-ion correlations (Itoh 1975)
- Neutrino-electron scattering
 \[\nu + e \leftrightarrow \nu + e \]
- Electron/neutrino capture on nuclei
 \[\nu_e + (A, Z) \leftrightarrow e^- + (A, Z + 1) \]
- Electron/neutrino capture on nucleons
 \[\nu_e + n \leftrightarrow e^- + p \]
 \[\bar{\nu}_e + p \leftrightarrow e^+ + n \]
- Neutrino-nucleon scattering
 \[\nu + N \leftrightarrow \nu + N \]
- Pair creation/annihilation
 \[e^- + e^+ \leftrightarrow \nu + \bar{\nu} \]
- Nucleon-Nucleon bremsstrahlung (Thompson et al. 2002)
- Electron-\(\mu\) pair annihilation --\(\rightarrow\) muon-\(\mu\) pair creation (Buras et al. 2003)

Equation of state:
- charge neutrality
- nuclear statistical equilibrium (NSE)
- finite temperature
- Liquid drop
 (Lattimer-Swesty 1991)
- Brueckner HF
 (Shen et al. 1998)

Cool collapse

Hot postbounce
Observation <-> Model <-> Physics

Spherical symmetry:
- Excellent n-transport with detailed input physics
- 5 different codes give consistent results!

Axisymmetry:
- ray-by-ray or MGFLD n-transport
- computationally very expensive

Three-dimensional:
- n-transport approximations, separate domains
- enable 3D flow pattern & magnetic fields
 (Fryer & Warren 2002/4, Scheck et al. 2003, Ott et al. 2007, Scheidegger et al. 2008)

- Magneto-rotational explosion mechanism
 (Bisnovatyi-Kogan 1976, Leblanc & Wilson 1979,...)
- Delayed n-driven explosion mechanism & SASI
 (Colgate 1966, ... Marek & Janka, 2007)
- Acoustic explosion mechanism
 (Burrows et al. 2006)

No explosions obtained for most progenitors

Some explosions obtained, results not yet converged

Phenomenological studies
Cold matter in the collapse phase

- coherent neutrino-ion scattering (diffusion)

density [g/cm^3]

energy [MeV]

radius [m]

center of star

(Martinez-Pinedo, Liebendörfer, Frekers 2006)
Cold matter in the collapse phase

(Martinez-Pinedo, Liebendörfer, Frekers 2006)

- coherent neutrino-ion scattering (diffusion)
- electron capture

Density [g/cm³]
Energy [MeV]
Radius
Density [g/cm³]

center of star
Cold matter in the collapse phase

(Density [g/cm3]

Energy [MeV]

- coherent neutrino-ion scattering (diffusion)
- electron capture
- neutrino-electron scattering (therm.)

Center of star

Martinez-Pinedo, Liebendörfer, Frekers 2006
Cold matter in the collapse phase

- coherent neutrino-ion scattering (diffusion)
- electron capture
- neutrino-electron scattering (therm.)

Density [g/cm3]

Energy [MeV]

Radius

Center of star

region of main deleptonisation

strong blocking

low e-capture rates

Martinez-Pinedo, Liebendörfer, Frekers (2006)
Cold matter in the collapse phase

- coherent neutrino-ion scattering (diffusion)
- electron capture
- neutrino-electron scattering (therm.)

• the treatment of nuclear structure in n-rich nuclei causes 20% differences in location of shock formation!
Emission of Gravitational Waves

Galactic supernovae
-- could (LIGO)
-- should (Adv. LIGO)
be detectable (Scheidegger et al. 2008)

Fast rotating 15Ms progenitor
\(\nu \sim 2 \times 10^{-2} \text{ rad/ps} \)
--> imprint of bounce and rotation rate

Slowly rotating 15Ms progenitor according to
(Heger, Woosley & Spruit 2005)

Only type I GW signals are obtained!
(Dimmelmeier/Ott et al. 2007)

Galactic supernovae
-- could (LIGO)
-- should (Adv. LIGO)
be detectable
Testing cold matter at bounce?

- the direct impact is small!
- Is there an indirect impact on fluid instabilities that produce larger variations in GW emission?

Run1 --> K=180 MeV
Run2 --> K=375 MeV

Maximum density:
Run1 --> \(\rho = 3.8 \times 10^{14} \text{ g/cm}^3 \)
Run2 --> \(\rho = 3.6 \times 10^{14} \text{ g/cm}^3 \)

Maximum Amplitude (A+II at bounce):
Run1 --> A=506 cm
Run2 --> A=406 cm

Characteristic frequency:
Run1 --> \(f_c = 657 \text{ Hz} \)
Run2 --> \(f_c = 565 \text{ Hz} \)
Hot matter: Electron-neutrino signal

• initially similar luminosities
• differences appear in accretion phase
• >50% accretion lumin.
• density profiles in outer progenitor layers very different
• neutrino mean energy reflects neutrinospheric temperature
Sensitivity with respect to EoS

• Collapse, bounce, and postbounce evolution until black hole formation

• The quasi-static compression of the protoneutron star is reflected in mu/tau neutrino luminosities

• The different stiffness of the EoS causes very different delay times until BH formation

(Fischer et al. 2008, similar Sumiyoshi et al. 2007)
Signals of QCD phase transition?

- early discussion, revived by SN1987A neutrinos
 (e.g. Migdal et al. 1979, Takhara & Sato 1985-88)

- investigations with parameterised equations of state and GR hydrodynamics

- more realistic EoS’s and GR hydrodynamics (Gentile et al. 1993)

(Takahara & Sato 1986)

(Takahara & Sato 1988)

• select phase transition at or immediately after core bounce

• a second shock forms

• catches up with first shock

--> Is this observable?

• weak interactions and neutrinos neglected

• simulations only to few ms postbounce
Simple model for phase transition

- state-of-the-art GR Boltzmann neutrino transport
- Shen et al. 1998 equation of state for hadronic phase
- MIT bag model for quark phase, choosing parameters for early phase transition: $B^{1/4} = 162-165$ MeV, $m_s = 100$ MeV
- Mixed phase according to Gibbs construction (mechanical and chemical equilibrium, n's trapped)

- 'just' compatible with heavy ion data
 - isospin-asymmetric
 - weak equilibrium allows for strange quarks

- 'just' compatible with neutron star data:
 - 162 supports 1.56 Ms
 - 165 supports 1.50 Ms
Neutrino signature of phase transition

Shown is a simulation of a 10 Ms star containing quark matter ($B^{1/4} = 162$) compared to one with hadronic matter only (black lines)

- strong second neutrino burst in all flavours
- electron anti-neutrinos dominate
- step up in neutrino rms energies

(I. Sagert et al., T. Fischer et al. 2008)
Origin of second neutrino burst

(Martinez-Pinedo, Liebendörfer, Frekers 2006)

- Quark/mixed phase only at high density
- \(\frac{m}{n}\)-spheres are at lower density

--> \(\frac{m}{n}\)'s not connected to quark physics

---> second luminosity peak must be an indirect effect!
Different dynamical stages

- collapse
- conversion to quark phase from inside out
- shrinking mixed phase
- second accretion shock propagating outward
- shock propagates with mixed-hadronic phase boundary

(Sagert et al., Fischer et al. 2008)
Different dynamical stages

- Shock propagates with mixed-hadronic phase boundary
- Accr. shock detaches from phase boundary to reach n-spheres in the hadronic phase

• Deleptonised matter becomes non-degenerate
• Weak equilibrium steps to larger Ye
• Pressure increases

(Sagert et al., Fischer et al. 2008)
Different dynamical stages

- accretion shock detaches from phase boundary to reach n-spheres in the hadronic phase
- shocked matter accelerates and triggers explosion

- deleptonised matter becomes non-degenerate
- weak equilibrium steps to larger Ye
- pressure increases

(Sagert et al., Fischer et al. 2008)
Different dynamical stages

- accr. shock detaches from phase boundary to reach \(n\)-spheres in the hadronic phase
- shocked matter accelerates and triggers explosion

- deleptonised matter becomes non-degenerate
- weak equilibrium steps to larger \(Ye\)
- pressure increases
- emission of anti-neutrino dominates when neutrino spheres are reached

(Sagert et al., Fischer et al. 2008)
Parameters, Progenitors & Nucleosynthesis

Larger bag constant
--> longer postbounce accretion time
--> more massive protoneutron star
--> deeper gravitational potential
--> larger peak luminosity in second neutrino burst
--> larger explosion energies

<table>
<thead>
<tr>
<th>Prog.</th>
<th>B</th>
<th>(t_{pb})</th>
<th>(M_Q)</th>
<th>(M_{\text{mixed}})</th>
<th>(M_{\text{NS}})</th>
<th>(E_{\text{expl}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[M]\</td>
<td>[MeV]\</td>
<td>[ms]\</td>
<td>[M]\</td>
<td>[M]\</td>
<td>(10^{51}) [erg]\</td>
</tr>
<tr>
<td>10</td>
<td>162</td>
<td>255</td>
<td>0.850</td>
<td>0.508</td>
<td>1.440</td>
<td>0.44</td>
</tr>
<tr>
<td>10</td>
<td>165</td>
<td>448</td>
<td>1.198</td>
<td>0.161</td>
<td>1.478</td>
<td>1.64</td>
</tr>
<tr>
<td>15</td>
<td>162</td>
<td>209</td>
<td>1.146</td>
<td>0.320</td>
<td>1.608</td>
<td>0.42</td>
</tr>
<tr>
<td>15</td>
<td>165</td>
<td>330a</td>
<td>1.496</td>
<td>0.116</td>
<td>1.700</td>
<td>unknownb</td>
</tr>
</tbody>
</table>

amoment of black hole formation
bblack hole formation before positive explosion energy is achieved

• Is tuning of parameters or the model of the quark phase possible to reproduce SN1987A?

• How do more massive progenitors explode?

• Weak \(n\)-driven explosion followed by phase transition?

• Some models eject low-Ye matter --> a possible site for the r-process?

(I. Sagert et al., T. Fischer et al. 2008)
Conclusions

• Deleptonisation of cold matter during collapse
 --> sensitive to e-capture
 --> and coherent scattering
 --> type I GW from 3D models

• Neutrino signal reflects PNS compressibility and accretion rate, sensitive to
 --> equation of state
 --> PNS thermal profile
 --> weak interaction rates

• Select bag constant for early QCD phase transition to quark matter
 --> second accretion shock
 --> anti-neutrino burst
 --> shift in rms energies
 --> triggers explosion