Measurements of Neutrino Charged Current Interactions at SciBooNE

Yasuhiro Nakajima (Kyoto University)

November 13th, 2008

PANIC 2008, Eilat, Israel
Contents

- SciBooNE Experiment
- Neutrino Flux Measurement
- Search of Charged Current Coherent Pion Production
- Summary
Introduction

Neutrino oscillation experiment

\[\sigma(E) \cdot \Phi_\nu^{\text{near}}(E) \leftrightarrow \sigma(E) \cdot \Phi_\nu^{\text{far}}(E) \]

- Neutrino-nucleus cross-sections at 1 GeV region are not well known
- Energy region for future neutrino experiments (T2K/Noνa)
- MiniBooNE and K2K are revealing surprises.

Need precise measurements in this energy region.

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
SciBooNE Experiment

- Fine-grained detector (SciBar) on the Fermilab Booster Neutrino Beamline.
- Cross section measurement for ~ 1 GeV neutrino and anti-neutrino
- Essential for future neutrino oscillation measurements (T2K, etc)
- MiniBooNE near detector
SciBooNE Detector

SciBar
- scintillator tracking detector
- 14,336 scintillator bars (15 tons)
- Neutrino target
- detect all charged particles
- p/π separation using dE/dx

Muon Range Detector (MRD)
- 12 2”-thick steel + scintillator planes
- measure muon momentum with range up to 1.2 GeV/c

Electron Catcher (EC)
- spaghetti calorimeter
- 2 planes (11 X₀)
- identify π₀ and νₑ

Newly built at FNAL with materials from past experiments

Used for K2K experiment. Shipped to and re-assembled at FNAL

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
SciBooNE Data Taking

- Start beam data taking in June 2007
- Data taking completed on August 18th, 2008
- Total 2.52×10^{20} POT for analysis (95% of delivered)
 - Neutrino: 0.99×10^{20} POT
 - Anti-neutrino: 1.53×10^{20} POT
- Stable data taking

Results from full neutrino data set are presented today

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
SciBooNE Analysis

- Neutrino energy spectrum measurements
 - SciBooNE/MiniBooNE joint ν_μ disappearance search
 - Beam ν_e flux measurement for MiniBooNE
- Cross section measurements
 - CC-1 π^+ production
 - CC-QE scattering
 - CC-1 π^0 production
 - NC-1 π^0 production
 - NC elastic scattering
 - Anti-neutrino cross-sections

Covered by this talk

Presented by J. Catala at the poster session

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
\(\nu \mu \) Spectrum Measurement

Result of MiniBooNE-only
\(\nu \mu \) disappearance search

(\textit{shape only} analysis)

- MiniBooNE/SciBooNE joint
 \(\nu \mu \) disappearance search

- Share beamline

- Share target material

- **Strong constraint for flux and cross-sections at MiniBooNE**
 \(\text{(Shape + Normalization)} \)

- Feed-back to cross section measurements at SciBooNE

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Event Selection

Use charged current inclusive sample

- Select MIP-like energetic tracks ($P_\mu > 0.25 \text{GeV}$)
- Reject side-escaping muons.
- 3 samples:
 - SciBar-stopped (P_μ, θ_μ)
 - MRD-stopped (P_μ, θ_μ)
 - MRD-penetrated (θ_μ)

SciBar stopped
MRD stopped
MRD penetrated

P_μ: Muon momentum reconstructed by its path-length
θ_μ: Muon angle w.r.t. beam axis

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Extracting E_ν Spectrum

- Use muon kinematics to extract E_ν information

$$E_\nu = \frac{m_p^2 - (m_n - V)^2 - m_{\mu}^2 + 2(m_n - V)E_\mu}{2(m_n - V - E_\mu + p_\mu \cos \theta_\mu)}$$

(Assuming CC-quasi-elastic scattering)

- Good coverage of entire kinematic region with these 3 samples.

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Muon Kinematics

SciBar stopped (P_μ, θ_μ)

SciBooNE

MC are relatively normalized to data by the number of SciBar-MRD matched event.

MRD stopped (P_μ, θ_μ)

MRD penetrated (θ_μ)

(Unable to reconstruct P_μ since muons are not stopped in the detectors)

Predict neutrino energy spectrum at SciBooNE by fitting P_μ and θ_μ distribution from each sample

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Spectrum Fit Result

(data-MC)/(stat. error)

Reconstructed P_μ vs. θ

SB-stop before fit

Reconstructed P_μ vs. θ

MRD-stop before fit

Reconstructed θ

Data

MC (Before fit)

Entries 67869

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Spectrum Fit Result

\[(\text{data-MC})/(\text{stat. error})\]

SB-stop before fit

SB-stop after fit

MRD-stop before fit

MRD-stop after fit

\[\chi^2/\text{ndf:} \]
\[1330/312 \rightarrow 505/312\]

Better data/MC agreement after fitting.

(Plots are relatively normalized)

Working on improving MC prediction.

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Flux Prediction

- Data prefer higher flux around 1 GeV and lower at high-energy region than MC prediction.

- Next:
 - Take detector/cross-section error into account.
 - Tune cross-section model.

[Graph showing flux prediction and ratio to central values]

Flux comparison with MiniBooNE

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
CC-1 \(\pi^+ \) Measurement

Physics Motivation
- Dominant background process to \(\nu_\mu \) disappearance measurement
- Need precise measurement in the 1 GeV region

CC-resonant \(\pi \) production
- \(\nu + p \rightarrow \mu + p + \pi^+ \)
- \(\nu + n \rightarrow \mu + n + \pi^+ \)

CC-coherent \(\pi \) production
\(\nu + C \rightarrow \mu + C + \pi^+ \)

- Select MRD-stopped and -penetrated event
- Require 2-MIP like tracks
- Require small energy deposit around the vertex
- Require forward pions
- Require non-QE kinematics

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Search for CC Coherent π + Production

Coherent π prediction based on Rein and Sehgal model

No evidence for CC coherent production found.

\(\sigma_{\text{Coh}} / \sigma_{\text{CC}} < 0.67 \times 10^{-2} \) (90% CL) at 1.1 GeV

\(\sigma_{\text{Coh}} / \sigma_{\text{CC}} < 1.36 \times 10^{-2} \) (90% CL) at 2.2 GeV

Paper submitted to PRD.
Hiraide et. al, arXiv:0811.0369
Summary

SciBooNE experiment:
- Precise cross-section measurement at 1 GeV region
- Neutrino flux measurement as a MiniBooNE near detector.
- Successfully completed data taking.
- ν_μ spectrum measurement:
 - Established the method for spectrum fitting
- Search for CC coherent π^+ production
 - No evidence for the signal found
- First official SciBooNE result (submitted to PRD)
- Many results coming soon in the next year!
Thank you

SciBooNE Collaboration

- Universitat Autonoma de Barcelona
- University of Cincinnati
- University of Colorado
- Columbia University
- Fermi National Accelerator Laboratory
- High Energy Accelerator Research Organization (KEK)
- Imperial College London*
- Indiana University
- Institute for Cosmic Ray Research
- Kyoto University*
- Los Alamos National Laboratory
- Louisiana State University
- Purdue University Calumet
- Università degli Studi di Roma and INFN-Roma
- Saint Mary’s University of Minnesota
- Tokyo Institute of Technology
- Universidad de de Valencia

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Backup slides
Booster Neutrino Beamline

- 8 GeV protons sent to target
- Beryllium target: 71cm long 1cm diameter
- Resultant mesons focused with magnetic horn
- Reversible horn polarity
- 50m decay volume
- Mesons decay to μ & ν_μ
- Short decay pipe minimises $\mu \rightarrow \nu_e$ decay

SciBooNE located 50m from absorber

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Neutrino Flux

![Graph showing neutrino flux as a function of energy.](image)

Flux (cm$^{-2}$/25MeV/POT)

All, ν_μ, $\bar{\nu}_\mu$, ν_e, $\bar{\nu}_e$
MuCL cut to remove non-muon tracks

- Remove large portion of NC event
- Reject if proton etc are miss-reconstructed as muon.
- Can be recovered by finding “real” muon

CCQE: Proton is the longest track and identified as muon
Acceptance

![Graphs showing Acceptance vs True E and True Pμ](image)

- Generated in FV
- Total selected
- SciBar stopped
- MRD stopped
- MRD penetrated

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Acceptance in P_μ vs. θ_μ

- All generated
- Accepted (sum of 3 samples)

Efficiency (generated/accepted)

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Muon angle, momentum

Reconstructed θ

Reconstructed P_μ

Dirt
NC
CC-multi-pi
CC-1pi
CC-QE

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Enu, Q2

Reconstructed E\nu

Reconstructed Q^2

Reconstructed E\nu

Reconstructed Q^2

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Muon angle, momentum

Reconstructed θ

Reconstructed P_{μ}
Distribution to fit

- Pmu vs. theta-mu

- All bins which has more than 1 MC entry are used for fit

MRD-stop

Reconstructed P_μ vs. θ
data

Reconstructed P_μ vs. θ
MC

(data-MC)/(stat. error)
Distribution to fit

- Same distribution for SciBar stopped
- Just use muon angle for MRD-penetrate sample.

Reconstructed P_μ vs. θ

Data

MC

(data-MC)/(stat. error)

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Fitting method

MC template for MRD-stopped

- $E_\nu < 0.5$ GeV
- $0.5 < E_\nu < 0.75$ GeV
- $0.75 < E_\nu < 1.0$ GeV
- $1.0 < E_\nu < 1.25$ GeV
- $1.25 < E_\nu < 1.5$ GeV
- $1.5 < E_\nu < 1.75$ GeV
- $1.75 < E_\nu < 2.0$ GeV
- $2.0 < E_\nu < 2.25$ GeV
- $2.25 < E_\nu < 2.5$ GeV
- $E_\nu > 2.5$ GeV

- Enu: 10bins
- 0.25 - 2.5 GeV, 0.25 GeV step,
- Final bin contain events >2.5GeV
Fitting method

MC template for SciBar-stopped

SciBar-stop and MRD-penetrate samples have less sensitivity to energy distribution.
Mostly normalization for low/high energy part.
χ^2 definition

- **Parameters:** (total 10)
- **Enu scale factor:** 10 bins
- $f_0, f_1, ..., f_9$

Error matrix for each Enu bins (from flux uncertainty only. No other systematics.)

$$\chi^2 = -2 \sum_i N_{bin}(P_\mu, \theta_\mu) \ln \left[\frac{P(N_i^{\text{data}}; N_i^{\text{MC}})}{P(N_i^{\text{data}}; N_i^{\text{data}})} \right] + \sum_{i,j} V_{ij}^{-1}(f_i - 1) \phi_i^{CV} (f_j - 1) \phi_j^{CV}$$

$$P(N, \mu) = \frac{\mu^N e^{-\mu}}{N!}$$

Poisson log likelihood

$$N(P_\mu, \theta_\mu) = \sum_k f_k n_k(P_\mu, \theta_\mu)$$

MC expectation for each $P_\mu - \theta_\mu$ bins

Contribution from k-th E_ν bins

MC expected flux (CV)

for each E_ν bins

$$\phi_k = \sum_{P_\mu, \theta_\mu} n_k(P_\mu, \theta_\mu)$$

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Fitted spectrum

-- MC prediction w/ sys. err.
-- Fit w/ SciBar stopped sample.
-- Fit w/ MRD stopped sample.
-- Fit w/ MRD penetrated sample.
-- Fit w/ all combined sample.

SciBar / MRD
stopped sample are
(roughly) consistent
Plots/Numbers from CC Coherent π^+ Production Paper
Reconstructed Eν after fitting

SciBar stopped

MRD stopped

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PAC 2008
Number of tracks from the vertex (MRD stopped sample)

Vertex activity
Low energy proton is identified as a large energy deposit around the vertex

MuCL of 2nd track for 2 track sample

Vertex activity of \(\mu + \pi \) sample

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Q^2 distributions for fit

(a) 1-track
- DATA
- CC coherent π
- CC resonant π
- Other
- CC QE

(b) μ+p
- DATA
- CC coherent π
- CC resonant π
- Other
- CC QE

(c) μ+π with activity
- DATA
- CC coherent π
- CC resonant π
- Other
- CC QE

(d) μ+π without activity
- DATA
- CC coherent π
- CC resonant π
- Other
- CC QE
CC coherent π^+ selection

$\Delta \theta_p$

Pion angle

Expected proton track direction assuming CCQE

Observed 2nd track

Muon track

Y. Nakajima (Kyoto U.), Nov. 13, 2008, PANIC 2008
Event selection summary

TABLE III: Event selection summary for the MRD stopped charged current coherent pion sample.

<table>
<thead>
<tr>
<th>Event selection</th>
<th>DATA</th>
<th>MC</th>
<th>Coherent π Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generated in SciBar fid.vol.</td>
<td>1,939</td>
<td>156,766</td>
<td>100%</td>
</tr>
<tr>
<td>SciBar-MRD matched</td>
<td>30,337</td>
<td>978</td>
<td>29,359</td>
</tr>
<tr>
<td>MRD stopped</td>
<td>21,762</td>
<td>715</td>
<td>20,437</td>
</tr>
<tr>
<td>2 track</td>
<td>5,939</td>
<td>358</td>
<td>6,073</td>
</tr>
<tr>
<td>Particle ID ($\mu + \pi$)</td>
<td>2,255</td>
<td>292</td>
<td>2,336</td>
</tr>
<tr>
<td>Vertex activity cut</td>
<td>887</td>
<td>264</td>
<td>961</td>
</tr>
<tr>
<td>CC-QE rejection</td>
<td>682</td>
<td>241</td>
<td>709</td>
</tr>
<tr>
<td>Pion track direction cut</td>
<td>425</td>
<td>233</td>
<td>451</td>
</tr>
<tr>
<td>Reconstructed Q^2 cut</td>
<td>247</td>
<td>201</td>
<td>228</td>
</tr>
</tbody>
</table>

TABLE IV: Event selection summary of MRD penetrated CC coherent pion sample.

<table>
<thead>
<tr>
<th>Event selection</th>
<th>DATA</th>
<th>MC</th>
<th>Coherent π Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generated in SciBar fid.vol.</td>
<td>1,939</td>
<td>156,766</td>
<td>100%</td>
</tr>
<tr>
<td>SciBar-MRD matched</td>
<td>30,337</td>
<td>978</td>
<td>29,359</td>
</tr>
<tr>
<td>MRD penetrated</td>
<td>3,712</td>
<td>177</td>
<td>4,375</td>
</tr>
<tr>
<td>2 track</td>
<td>1,029</td>
<td>92</td>
<td>1,304</td>
</tr>
<tr>
<td>Particle ID ($\mu + \pi$)</td>
<td>418</td>
<td>78</td>
<td>474</td>
</tr>
<tr>
<td>Vertex activity cut</td>
<td>167</td>
<td>71</td>
<td>186</td>
</tr>
<tr>
<td>CC-QE rejection</td>
<td>134</td>
<td>67</td>
<td>135</td>
</tr>
<tr>
<td>Pion track direction cut</td>
<td>107</td>
<td>66</td>
<td>109</td>
</tr>
<tr>
<td>Reconstructed Q^2 cut</td>
<td>57</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>
Systematic errors

TABLE V: Summary of the systematic errors in the charged current coherent pion cross section ratio.

<table>
<thead>
<tr>
<th>Source</th>
<th>MRD stopped error ($\times 10^{-2}$)</th>
<th>MRD penetrated error ($\times 10^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector response</td>
<td>+0.10 \pm 0.18</td>
<td>+0.18 \pm 0.18</td>
</tr>
<tr>
<td>Nuclear effect</td>
<td>+0.20 \pm 0.07</td>
<td>+0.19 \pm 0.09</td>
</tr>
<tr>
<td>Neutrino interaction model</td>
<td>+0.17 \pm 0.04</td>
<td>+0.08 \pm 0.04</td>
</tr>
<tr>
<td>Neutrino beam</td>
<td>+0.07 \pm 0.11</td>
<td>+0.27 \pm 0.13</td>
</tr>
<tr>
<td>Event selection</td>
<td>+0.07 \pm 0.14</td>
<td>+0.06 \pm 0.05</td>
</tr>
<tr>
<td>Total</td>
<td>+0.30 \pm 0.27</td>
<td>+0.39 \pm 0.25</td>
</tr>
</tbody>
</table>