WITCH
a Double Penning Trap Experiment for Weak Interaction Studies

Michaël Tandecki

N. Severijnsa, E. Traykova, S. Van Gorpa, F. Wauters, M. Beckb, P. Friedagb, Ch. Weinheimerb, P. Delahayec, A. Herlertc, F. Wenanderc, F. Glückd, V. Yu. Kozlovd, D. Zakouckye

a IKS - Leuven, Belgium
b IKP - Münster, Germany
c CERN
d FZK - Karlsruhe, Germany
e NPI - Rez, Czech Republic

11th of November, PANIC 2008
WITCH

1. Motivation
2. Overview of the set-up
3. Penning traps
4. Retardation spectrometer

First measurements

1. Interesting isotopes
2. Proof-of-principle: 124In
3. 35Ar test

Other physics goals

1. Spectroscopy measurements

Conclusion & Outlook
Physics motivation: β-ν angular correlation

\[H_\beta = H_S + H_V + H_T + H_A + H_P \]

e.g.: Fermi β decay ($0^+ \rightarrow 0^+$)

\[W(\theta) \approx 1 + a \frac{v}{c} \cos \theta \]

\[a \approx 1 - \frac{|C_S|^2 + |C'_S|^2}{|C_V|^2} \]

Current experimental limits:
(from nuclear & neutron β decay)

\[\frac{C_S}{C_V} < 7\%, \quad \frac{C_T}{C_A} < 9\% \]
WITCH: Weak Interaction Trap for Charged Particles
Reality
Basics of Penning Traps

- An axial B field for radial confinement
- A quadrupole E field for axial confinement

Three eigenmotions:
- Reduced cyclotron motion with frequency, ω_+
- Harmonic oscillation in electric potential, ω_z
- Interplay between B and E field, ω_-

\[
\omega_c = \frac{qB}{m}, \quad \omega_\pm = \frac{1}{2}(\omega_c \pm \sqrt{\omega_c^2 - 2\omega_z^2})
\]
\[
\omega_c \approx \omega_+ \gg \omega_z \gg \omega_-
\]
Ion Cloud Manipulation

Segmented central electrode (RE)

In cooler trap

- Dipole Excitation (ω_-): Mass independent removal from trap center
- Quadrupole Excitation (ω_c): Mass dependent centering
 $+$ buffer gas = cooling of ion cloud
Retardation Spectrometer

\[\frac{p^2}{B} = \text{constant} \Rightarrow \frac{E_{\text{kin}}^\perp_{\text{high field}}}{E_{\text{kin}}^\perp_{\text{low field}}} = \frac{B_{\text{high}}}{B_{\text{low}}} = \frac{9T}{0.1T} = 98.8\% \]
Retardation spectrometer

![Graphs showing data comparison]

Michaël Tandecki (IKS - Leuven, Belgium)
Choice of isotopes

- Production yield at ISOLDE: 10^6-$10^7/\mu$C
- Half-life: \sim 1 second (long enough for trapping, short enough for statistics)
- Low ionization potential
- Decay mode: β^- (\pm10 times more ions than β^+)
- Stable daughter isotope
- Minimal isobaric/isomeric contamination
- Simple decay scheme

$\Rightarrow^{122g}_{\text{In}}$ (Our prime physics candidate is 35Ar)

The ground state of 122In is not produced, only 122Inm1,2

124In was chosen; complex decay schema, and isomeric contamination.

$T_{1/2}(^{124g}_{\text{In}}) = 3.11(10)$ s, $T_{1/2}(^{124m}_{\text{In}}) = 3.7(2)$
124In integral spectrum, November 2006

Fit Parameters

- Offset of applied potentials
- Fraction of isomeric contamination
- Overall scaling
- Background scaling
- Charge state distribution
Shake-off

- Position Auger charge distribution
- Width Auger charge distribution
- Slope β-decay charge distribution

- IT + Auger (e.g. ^{133}Xe)
- ^{124}Sn electron structure: $[\text{Kr}]5s^24d^{10}5p^2$

- β Shake-off (e.g. ^{41}Ar)

2. T.A. Carlson, Phys. Rev. 131 (1963) 676
The test run did not go as hoped..

- Stable 35Cl contamination

 At first: The Cl:Ar was 400:1

 Optimized: 25:1 ratio, but greatly reduced yield

 ⇒ Under investigation by ISOLDE’s target group

- Charge exchange

 REXTRAP: half-life of 63 ms

 WITCH: Even worse half-life; this prevented us from preparing the ion cloud

 ⇒ No useful recoil spectrum was obtained

 ⇒ Probably cause; bad vacuum

 ⇒ *improvement of our vacuum* to ensure a *pure buffer gas*
Mass resolving power of our new traps

Mass purification is done by a combination of RF excitations in the trap and buffer gas cooling

\[
\text{Mass resolution: } \frac{m}{\Delta m} = \frac{f}{\Delta f}\]

\[(1) \]

Figure: ω_c quadrupole excitation on ^{133}Cs, FWHM = 3.54 Hz, in 6T

Applications: Spectroscopy measurements with a very pure sample ⇒ Tapestation

Interesting isotopes

Work carried out by Towner and Hardy\(^4\)

\[
\mathcal{F}_t \equiv \frac{K}{2G_F V_{ud}(1 + \Delta_{R}^V)}
\]

- \(K\) is a combination of natural constants
- \(\Delta_{R}^V\) is a nuclear independent radiative correction - can be calculated
- \(G_F\) is the strength of the weak interaction in a purely leptonic decay - can be measured in muon experiments
- \(\mathcal{F}_t\) can be obtained from nuclear experiments
- \(V_{ud}\) - a matrix element from the CKM matrix - can be obtained by knowing all of the above parameters. In this list, \(\mathcal{F}_t\) is the less precise one.

Conclusion

- Proof-of-principle has been performed (124In)
- Our test run (35Ar) did not go as smoothly as hoped...
- Preparations are on the way to do a physics run on 35Ar

Outlook

- Next year we are planning runs to check for systematics
- If everything goes well we can have a data-taking run
- Other physics opportunities are visible on the horizon