Outline

• Motivation
• $D_{s0}(2317)$, $D_0(2400)$ and $X(3700)$
• Two meson loop in the medium
• The self-energy of the D meson
• Charm resonances in nuclear matter
• Conclusions & Outlook
Motivation

The modification of the properties of elementary particles in nuclei give us information about the excitation mechanisms in the nucleus as well as the nature of those particles.

ex. $\Lambda(1520)$ resonance: width at nuclear matter density is five times bigger than the free one.

\[\Lambda^*(1520) + p \rightarrow \Sigma^*(1385) + n \]

Kaskulov and Oset, PRC 73 (2006) 045213

FAIR will extend the GSI program for in-medium modifications of hadrons in the light sector to the heavy one.

http://www.gsi.de/fair/
D_{s0}(2317), D_0(2400) and X(3700)

Charm and hidden charm scalar resonances are generated dynamically from the interaction of coupled channels of two pseudoscalars*

\[
T_{ij} = V_{ij} + V_{il} G_l T_{lj}
\]

with \(G \) the two-meson loop

\[
G_l(P) = i \int \frac{dq^4}{(2\pi)^4} \frac{1}{q^2 - m_1^2 + i\epsilon} \frac{1}{(P - q)^2 - m_2^2 + i\epsilon}
\]

and \(V \) the potential, from the generalization of the meson-meson SU(3) chiral lagrangian to the strongly broken SU(4) sector mostly due to the explicit consideration of the masses of the exchanged vector mesons

\[
\mathcal{L} = \frac{1}{12f^2} \left(\text{Tr} \left(J_{88\mu} J_{88}^{\mu} + 2J_{33\mu} J_{88}^{\mu} + J_{3\bar{3} \mu} J_{33}^{\mu} \right) + \frac{8}{3} \gamma J_{31\mu} J_{13}^{\mu} + \frac{4}{\sqrt{3}} \gamma \left(J_{31\mu} J_{83}^{\mu} + J_{38\mu} J_{13}^{\mu} \right) + 2\gamma J_{38\mu} J_{83}^{\mu} + \psi_5 J_{33\mu} J_{33}^{\mu} + \mathcal{L}_{\text{mass}} \right)
\]

with currents and mesons fields,

\[
j_{ij}^{\mu} = (\partial^{\mu} \phi_i) \phi_j - \phi_i (\partial^{\mu} \phi_j)
\]

\[
\phi_8 = \begin{pmatrix}
\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} \\
\pi^- \\
\bar{K}^0 - \frac{2\eta}{\sqrt{6}} \\
K^-
\end{pmatrix},
\quad
\phi_3 = \begin{pmatrix}
\bar{D}^0 \\
D^- \\
D_s^-
\end{pmatrix},
\quad

\psi_5 = -\frac{1}{3} + \frac{4}{3} \left(\frac{m_L}{m_{J^\psi}} \right)^2,
\quad
\phi_1 = \eta_c
\]

Gamermann, Oset, Strottman, Vicente-Vacas, PRD 76 (2007) 074016
Close to a pole (2nd Riemann sheet), the amplitude is

where $\text{Re } z_R$ is the mass of the resonance, $\text{Im } z_R$ the half width and g_i gives the coupling of the resonance to a given channel.

D_{s0}(2317)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Chiral model res (GeV)</th>
<th>Phenom. model res (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DK</td>
<td>10.21</td>
<td>10.36</td>
</tr>
<tr>
<td>$D_2\eta$</td>
<td>6.90</td>
<td>6.00</td>
</tr>
<tr>
<td>$D_2\eta_c$</td>
<td>0.48</td>
<td>1.52</td>
</tr>
</tbody>
</table>

D_{0}(2400)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Chiral model res (GeV)</th>
<th>Phenom. model res (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D\pi$</td>
<td>8.91</td>
<td>10.87</td>
</tr>
<tr>
<td>$D\eta$</td>
<td>1.36</td>
<td>3.77</td>
</tr>
<tr>
<td>$D_2\bar{K}$</td>
<td>5.71</td>
<td>8.52</td>
</tr>
</tbody>
</table>

X(3700)

<table>
<thead>
<tr>
<th>Channel</th>
<th>f_0 res (GeV)</th>
<th>σ res (GeV)</th>
<th>X(3700) (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi\pi$</td>
<td>1.96</td>
<td>4.23</td>
<td>0.21</td>
</tr>
<tr>
<td>$K\bar{K}$</td>
<td>3.82</td>
<td>1.28</td>
<td>0.03</td>
</tr>
<tr>
<td>$\eta\eta$</td>
<td>4.47</td>
<td>0.47</td>
<td>0.00</td>
</tr>
<tr>
<td>$D\bar{D}$</td>
<td>0.71</td>
<td>4.08</td>
<td>10.41</td>
</tr>
<tr>
<td>$D_2\bar{D}_2$</td>
<td>3.73</td>
<td>0.49</td>
<td>6.73</td>
</tr>
<tr>
<td>$\eta\eta_c$</td>
<td>2.07</td>
<td>1.04</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Two meson loop in the medium

\[\tilde{T}_{ij} = V_{ij} + V_{il} G_l \tilde{T}_{lj} \]

\[\tilde{G}(P^0, \bar{P}, \rho) = i \int \frac{d^4q}{(2\pi)^4} D_D(q, \rho) D_{\bar{D}}(P - q, \rho) \]

\[= i \int \frac{d^4q}{(2\pi)^4} \int_0^\infty d\omega \frac{S_D(\omega, \bar{q}, \rho)}{q^0 - \omega + i\eta} \left(P^0 - q^0 - \bar{q}^2 - m_D^2 \right) + i\eta \]
The self-energy of the D meson

The \(I=0 \ \Lambda_c(2593) \) and another resonance in \(I=1 \) around the nominal \(\Sigma_c(2800) \) are generated.

LT, Ramos, Mizutani, PRC 77 (2008) 015207

D-meson: s-wave much more important than p-wave
Charm resonances in nuclear matter

\[D_{s0}(2317): \]
\[D^0K^+ \rightarrow D^0K^+ \]

\[D_0(2400): \]
\[D^0\pi^0 \rightarrow D^0\pi^0 \]

\[X(3700): \]
\[D^0\bar{D}^0 \rightarrow D^0\bar{D}^0 \]
Experimental analysis of the resonances in nuclear medium via, for example, the transparency ratio*: test of the D meson interaction in nuclei and the nature of those charm scalar resonances

*ω: Kaskulov, Hernandez and Oset, EPJA 31 (2007) 245
ϕ: Cabrera, Roca, Oset, Toki and Vicente-Vacas, NPA 733 (2004) 130
Conclusions & Outlook

We generate dynamically charm and hidden charm scalar resonances via a unitarized coupled-channel calculation of two pseudoscalars in nuclear matter

• $D_{s0}(2317)$, $D_0(2400)$ and $X(3700)$ are generated dynamically. While $D_{s0}(2317)$ and $X(3700)$ develop a width of 100 or 200 MeV at ρ_0, the width $D_0(2400)$ changes less comparatively.

• Experimental analysis of the renormalized resonances in nuclear medium (via transparency ratios) is a valuable test of the dynamics of D meson interaction in nuclei and the nature of those charm and hidden charm scalar resonances.

• In particular, FAIR is an optimal hadron facility to investigate charm physics in a dense and hot medium

Molina, Gamermann, Oset and LT, arXiv:0806.3711