Prospects for SUSY Discovery and Measurements with the ATLAS Detector at the LHC

Michele Consonni, on behalf of the ATLAS Collaboration

Radboud University Nijmegen/Nikhef

PANIC08 - Eilat, Israel - 11 November 2008
Outline

1. Introduction
2. Inclusive searches of E^miss_T signatures
3. Exclusive measurements
4. Long-lived heavy particles
5. Conclusions
Supersymmetry

- Symmetry: bosons \leftrightarrow fermions
- Consider minimal extension of SM
- At LHC: production of strongly interacting SUSY particles
- Cross-section mostly dependent on particle masses
- Decay chains model dependent

Topics covered:
- R-parity conserving scenarios only
- E_T^{miss} signatures
- Long-lived heavy particles

Benchmark models:
- mSUGRA
- NUHM
- GMSB
Emission of hard jets and leptons
If the lightest SUSY particle is neutral and weakly interacting
⇒ Missing energy in the detector

Main backgrounds:
- $Z/W + \text{jets}$
- $t\bar{t}$
- QCD events
Inclusive searches of E_T^{miss} signatures

Exclusive measurements

Long-lived heavy particles

Conclusions

E_T^{miss} signatures: zero- and one-lepton modes

$E_T^{\text{miss}} > 100$ GeV + 4 jets + 0 (left) or 1 (right) lepton

Effective Mass $= \sum_{\text{jets, } \ell} p_T + E_T^{\text{miss}}$

Lepton requirement to bring background down to manageable levels
Inclusive searches of E_T^{miss} signatures

Exclusive measurements

Long-lived heavy particles

Conclusions

E_T^{miss} signatures: other modes

- Broad spectrum of E_T^{miss} signatures (not covered here):
 - Two and three leptons + jets
 - τ-jets + jets
 - b-jets + jets
 - Multi leptons (No requirements on the number of jets)
 \[\implies \text{Direct production of } \tilde{\chi}^0 \text{ and } \tilde{\chi}^\pm \]
 - Photons + jets
 \[\implies \tilde{\chi}_1^0 \rightarrow \tilde{G}\gamma \]

- All signals and backgrounds studied with fully detailed Geant 4 simulations
Precise estimate of background relies on both MC and data

Control samples needed for data driven estimates

Example: reverse one selection cut

Signal region \(M_T \equiv \vec{p}_{T,\ell} \cdot \vec{E}_T^{\text{miss}} > 100 \text{ GeV} \)

Control region \(M_T \equiv \vec{p}_{T,\ell} \cdot \vec{E}_T^{\text{miss}} < 100 \text{ GeV} \)

- Background shape from control sample
- Normalize to number of events in signal sample in a region where SUSY contribution is small \((E_T^{\text{miss}} < 200 \text{ GeV})\)
Systematic effects

- Detector response challenges
 - Lepton identification efficiency
 - Jet energy scale and jet response tails
 - Missing E_T shape

- Theoretical uncertainties
 - Parton Density Functions
 - Normalization of background
 - EW and QCD corrections at NLO

- SUSY contamination in control samples
mSUGRA and GMSB scan
- 1 fb$^{-1}$ \sim 1 year of LHC operation
- Reach up to gluino and squark masses $\sim O(1$ TeV$)$
- Stat. and syst. uncertainty on background included
Mass spectrum informations from cascade kinematic

\[\tilde{q}_L \rightarrow \tilde{\chi}^0_2 q \rightarrow (\ell^\mp \ell^\pm q) \rightarrow \tilde{\chi}^0_1 \ell^- \ell^+ q \]

Endpoints in invariant mass distributions

- $\ell^+ + \ell^-$
- $\ell^+ + \ell^- + q$
- $\ell^\pm + q$

For instance

\[M_{\ell\ell}^{\text{edge}} = m_{\tilde{\chi}^0_2} \sqrt{1 - \frac{m^2_{\ell}}{m^2_{\tilde{\chi}^0_2}}} \sqrt{1 - \frac{m^2_{\tilde{\chi}^0_1}}{m^2_{\ell}}} \]
Leptonic signatures

- Background significantly reduced by subtracting $e^\pm \mu^\mp$
- $M_{\ell\ell}^{\text{edge}} = 52.7 \pm 2.4 \text{ (stat)} \pm 0.2 \text{ (syst)} \text{ GeV}$
- Consistent with true value 53.6 GeV
Other signatures

- $\tau^+\tau^-$ invariant mass

 ![Graph showing $\tau^+\tau^-$ invariant mass](image)

 - $L - R$ mixing may enhance $\tau^+\tau^-$ with respect to $\ell^+\ell^-$
 - No sharp edge because of neutrino presence

- Higgs to $b\bar{b}$ in SUSY events

 ![Graph showing Higgs to $b\bar{b}$ in SUSY events](image)

 - E_T^{miss} requirement suppresses QCD background
 - Competitive with SM channels
Long-lived heavy particles: trigger issues

- Assume the lightest SUSY particle is charged or strongly interacting
- Penetrating charged track ⇐⇒ “heavy slow muons”
- For $\beta \sim 0.8 \Rightarrow$ Time of flight 15 ns longer than muons

- ATLAS muon system provides excellent time of flight resolution (0.7 ns)
 ⇒ Precise mass reconstruction and muon rejection
- But very high LHC bunch-crossing rate (25 ns)
 - Particle could be assigned to the wrong bunch crossing and not read out
 - Appropriate triggering scheme is critical
Long-lived heavy particles: discovery reach

Stable sleptons

Example: 100 GeV slepton
Discovery largely independent of the model characteristics

R-hadrons

<table>
<thead>
<tr>
<th>Sample</th>
<th>Events/fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 GeV gluino</td>
<td>6.4×10^3</td>
</tr>
<tr>
<td>1 TeV gluino</td>
<td>10.7</td>
</tr>
<tr>
<td>1.6 TeV gluino</td>
<td>0.1</td>
</tr>
<tr>
<td>300 GeV stop</td>
<td>70.0</td>
</tr>
<tr>
<td>600 GeV stop</td>
<td>3.9</td>
</tr>
<tr>
<td>1 TeV stop</td>
<td>0.1</td>
</tr>
<tr>
<td>QCD events</td>
<td>$\lesssim 1$</td>
</tr>
<tr>
<td>$Z \rightarrow \mu \mu$</td>
<td>$\lesssim 1$</td>
</tr>
</tbody>
</table>

Characteristic “heavy slow muon” signature
May also undergo charge flipping in the calorimeter
Conclusions

- New physics expected to appear at the TeV scale
- R-parity conserving SUSY scenarios are well motivated
- Extensive studies of signatures:
 - With E_T^{miss}
 - With long-lived heavy particles

\Rightarrow Reach up to gluino and squark masses $\sim O(1 \text{ TeV})$ for 1 fb$^{-1}$

- Discovery relies on good knowledge of backgrounds
 - Interplay between MC and data-driven estimations