SYMMETRY, CONFINEMENT AND
THE PHASE DIAGRAM OF QCD.

Adriano Di Giacomo
PISA UNIVERSITY & INFN

BASED ON WORK IN COLLABORATION WITH

G. COSSU
M. D'ELIA
L. LEPORI
C. PICA
F. PUCCI
1. WHY SYMMETRY?

- EXPERIMENT

\[
\frac{n_q}{n_p} < 10^{-27} \quad \text{or} \quad n_q \approx 10^{-12} \quad \text{S.C.H.}
\]

\[
\sigma_q = \sigma(p+p+q(q)+X) < 10^{-26} \text{cm}^2 \quad \sigma_q \approx \sigma_{\text{tor}} = 10^{-25} \text{cm}^2
\]

A FACTOR \approx 10^{-15}!

- NATURAL EXPLANATION:

\[
n_q = 0 \quad \sigma_q = 0
\]

DUE TO A SYMMETRY,

\[
\downarrow
\]

THE DECONFINING TRANSITION IS ORDER-DISORDER, CANNOT BE A Crossover!

2. SUPERCONDUCTIVITY

\[
\frac{\bar{s}_{\text{sc}}}{s_{\text{norm.}}} < 10^{-16} \quad \Rightarrow \quad \bar{s}_{\text{sc}} = 0
\]

Higgs BREAKING OF E.H. U(1)
3-flavor phase diagram

$T_{\chi}^{nr=3} \sim 155 \text{ MeV}$

$T_{\chi}^{nr=2} \sim 175 \text{ MeV}$

$T_d \sim 270 \text{ MeV}$

$\mathbf{m}_{PS}^{\text{crit}} \simeq 2.5 \text{ GeV}$

$\mathbf{m}_{PS}^{\text{crit}} \simeq 300 \text{ MeV}$

BIELEFELD GROUP
II. WHAT SYMMETRY?

- COLOR AN EXACT SYMMETRY

- QUENCHED (NO QUARKS)

 \[Z_n : \langle L \rangle \] \quad \text{"THE ORDER PARAMETER"}

 QUARKS BREAK \(Z_n \).

- CHIRAL SYMMETRY \(\exists \) AT \(m_q = 0 \), AND IS

 RESTORED AT \(T_c \).

 IN \(N_f = 2 \) ADJOINT QCD THE TWO TRANSITIONS ARE DISTINCT:

 CHIRAL RESTORED AT \(T_c' > T_c \) : DECONFINEMENT IS ORDER,

 CHIRAL A CROSSOVER. [Karsch et al., Cossu et al.]

- ONLY KNOWN WAY TO GET EXTRA

 SYMMETRY : DUALITY [Kramers Wannier 41, Seiberg Witten]

 EXCITATIONS WITH TOPOLOGICALLY NON TRIVIAL BOUNDARY CONDITIONS.

 2+1 DIM. VORTICES (NON TRIVIAL \(\Pi_1 \))

 3+1 DIM. MONOPOLES (NON TRIVIAL \(\Pi_2 \))
MONOPOLES ["tHooft '74, Polyakov '74]

SO(3) HIGGS MODEL: HEDGHEGOG GAUGE

\[\phi \xrightarrow{r \to \infty} \frac{k^a}{r} \]

A non trivial mapping \(S_2 \to SO(3) \).

tHooft Tensor

\[F_{\mu \nu}^a = \bar{\phi} \varepsilon_{\mu \nu}^a - \frac{1}{3} \bar{\phi} \left(D_\mu \phi \wedge D_\nu \phi \right) \]

\[\bar{J}_\nu = \frac{1}{3} \frac{2}{r^3} + \text{Dirac String} \]

In compact formulation (lattice) string is invisible

\[\nabla^2 \bar{J}_\nu = \frac{1}{3} \delta^2 \langle \nu \rangle \]

Violation of Bianchi identities

\[\partial_\mu F^\mu_{\nu \lambda} = J^\nu_{\lambda} \neq 0 \]

Dual symmetry

Geometry independent of the gauge group \((\text{AdS}_5 \times \text{S}^5) \)

\[F^a_{\mu \nu} \quad (a = 1, 2, \ldots, r) \]

\(r \) = rank of the group

\[j^a_\nu = \partial_\mu F^\mu_{a \nu} \neq 0 \quad \partial_\nu j^a_\nu = 0 \]

\(q^a \) magnetic charges \(U(1)^a \)

\(U(1)^a \) Higgs broken (dual superconductor)

\(U(1)^a \) restored (normal)

Order parameters \(\langle \mu^a \rangle \) \((\text{AdS}_5; \text{AdS}_2 \times \text{S}^2) \)

\(\mu^a \) carries \(q^a \neq 0 \)

Checked on the lattice.
"Transition": a rapid change at some value T_c of a parameter T. At $T = T_c$, a peak of susceptibilities. [Fig. 2]

- Change in the heat content:
 - Peak off the specific heat C_v.

- **Crossover**: no discontinuity at T_c as $V \to \infty$.

- **First Order**: discontinuity in heat content: $C_v(T_c) \to \infty$ as $V \to \infty$.

- **Second Order**: free energy continuous, C_v discontinuous, $\frac{dC_v}{dT}$ divergent.

Stating that a transition is a crossover means no discontinuity at any order: impossible with finite resolution. Sometimes possible with support of history.
\(N_f = 2 \). If chiral degrees of freedom dominate ren. group + \((4 - \xi) \Rightarrow [\text{ Pisovnik et al. 84}] \)

(i) \((m = 0)\): 2nd order O(4), crossover \(m \neq 0 \)
- Tricritical point

(ii) \(m = 0 \): 1st order, 1st order \(m \neq 0 \)

- Finite size scaling, \(\tau = 1 - T/T_c \)

\[
c_V - c_0 \approx \frac{\alpha}{V^{1/2}} \phi_c \left(\frac{\tau}{V^{1/2}}, m L_5 \right)
\]

\(\Lambda = \int (c_V - c_0) d\tau \) [Latent heat]

\(\Lambda \approx V^{-0.35} \) \(\sim O(4) \) \(\Lambda \approx \text{cutoff 1st order} \)

\(\Lambda = \left\{ \begin{array}{l}
\alpha = -0.24 \\
y_\rho = 1.34 \\
y_h = 1.48
\end{array} \right. \)

\(\Lambda = \left\{ \begin{array}{l}
\alpha = 1 \\
y_\rho = 3 \\
y_h = 3
\end{array} \right. \)

(i) Keep second scaling variable \{ \text{fixed} \}
- Check scaling in the first \{ \text{O(4)} \} \text{ no Bielefeld, MILC, Tsukuba} \text{ 1st OK.}

(ii) Keep first variable fixed, \(V \to \infty \)

\[
c_V - c_0 \approx m^{13} f_c \left(\tau V^{1/45} \right) \quad \text{[O(4) no]}
\]

\[
c_V - c_0 = V \phi_c \left(\tau V, m \right) \quad \text{1st order}
\]

\text{OK but first term negligible.}
\[l_e = 4 \quad l_s = 6, 20, 24, 32, 48 \text{ on the way} \]

First Term Small: Very Weak First Order
Work in Progress at Large Volumes \(l_s \rightarrow \infty \)

- \(O(4) \) Excluded; First Order Consistent with Data But Needs Check at Large \(V \).

- Phase Diagram Still Controversial.

Observation of Tri-Critical Point in Heavy Ion Experiments Very Important.

IV Summary

- Nature Suggests a Symmetry Behind Confinement: No Crossovers
- Geometry \(\rightarrow \) Dual Superconductivity
- Phase Diagram: Under Debate