Jet Measurements with the EMCal of ALICE

Terry Awes
CERN and Oak Ridge National Laboratory
For the ALICE collaboration
Jet Measurements in HI Collisions

- Motivation: Use particles produced in hard processes of the early phase of the HI collision to probe the produced medium.
- Hard photons
 - Unmodified by the medium
- Hard partons -> Jets
 - Interact strongly with the medium and probe its characteristics (parton energy loss)
 - Quark vs Gluon (coupling) dependence
 - Flavor (mass) dependence
RHIC Results on “Jet Quenching” in A+A

- High p_T γ’s produced at expected rate
 - No large initial state effects
- Yield of high p_T π^0’s suppressed
 - Parton energy loss reflected in softer fragmentation products

- Suppression of back-to-back high p_T hadrons
 - Recoil parton “quenched”

$$R_{AA}(p_T, \eta; b) = \frac{1}{d^2 N_{coll}^{AB}} \frac{d^2 N_{hard}^{AB}}{d p_T d \eta} \frac{d^2 N_{hard}^{PP}}{d p_T d \eta}$$
Full Jet Measurements

- **Parton energy loss consequences:**
 - Leading fragmentation hadrons are softer due to parton energy loss
 - Observed high p_T hadrons are dominantly from harder partons emitted from the periphery (surface bias)
 - Additional soft “fragmentation” products due to energy loss (gluon bremsstrahlung)
 - Momentum of jet (parton) is not lost but is redistributed in an apparently modified fragmentation

- If we can identify the jet and reconstruct its energy, then we can remove surface bias and study the medium by its effect on the jet fragmentation
 - Measuring the recoil direct photon from $\gamma+\text{jet}$ processes would provide direct measurement of the parton energy (@LO)
 - “Golden” measurement, but difficult due to low rate and backgrounds
The effect of parton energy loss is to suppress the yield of high z ($=p_T^h/E_T^{jet}$) fragmentation hadrons with enhanced low z yield.

The effect on yields is seen more clearly in Humped-Back Plateau distribution.

- Sensitive to the transport coefficient $q^\hat{v}$ characterizing the stopping power of the medium.

$$zD(z, Q^2) = K \exp \left[-\frac{1}{2\sigma^2} (\xi - \xi_P)^2 \right]$$

$$\xi_P \approx \frac{1}{4} \ln \left(\frac{s}{\Lambda_{QCD}^2} \right)$$

$$\sigma \propto \left[\ln \left(\frac{s}{\Lambda_{QCD}^2} \right) \right]^{3/4}$$
ALICE Central Detectors

- **ITS, TPC,**
 - Charged multiplicity $|\Delta \eta|<1.8$
 - Excellent tracking from 100 MeV/c; $\Delta p/p=6\% @ 100$ Ge/c

- **TRD, HMPID, TOF, TPC**
 - Excellent Particle ID

- **EM Calorimetry**
 - **PHOS:** high resolution
 - Coverage $\Delta \eta=0.25$, $\Delta \phi=100^\circ$
 - Granularity $\delta \eta = \delta \phi = 0.004$
 - Resolution $\delta E/E=3\%/\sqrt{E}$
 - $\gamma (\pi^0)$ trigger
 - **EMCal:** large coverage
 - Coverage $\Delta \eta=1.4$, $\Delta \phi=107^\circ$
 - Granularity $\delta \eta = \delta \phi = 0.014$
 - Resolution $\delta E/E=11\%/\sqrt{E}$
 - $\gamma (\pi^0)$ and jet trigger
Hard Probes in ALICE

- Jet yields in ALICE to above 200 GeV
- EMCal needed to:
 - Provide trigger
 - Improve Jet resolution
 - Extend γ, π^0, and e^\pm measurements
 - γ-jet measurements
 - b, c tagged jets

Jet yields in ALICE:
- Jet yields above 200 GeV
- γ-jet measurements
- b, c tagged jets

Graph showing annual yields in ALICE:
- $E_\text{T} > E_\text{T}^\text{cut}$ or $p_T > p_T^\text{cut}$
- Pb+Pb minbias
- Binary scaling from p+p
- $L = 0.5/\text{mb/s}$; 1 year $= 10^5$ s
- EMCAL: $\Delta\eta \times \Delta\phi = 1.4 \times 10^3$

Graph showing 100 GeV Jet counts:
- Charged
- γ
- Leading charged particle

Slide 7 Terry Awes, PANIC’08, Eilat, Israel
ALICE EMCal

EMCal: Pb/Sc Shashlik
- 10+2/3 Super Modules
- Approved 12/08
- Two SM for 2009 run
- Complete for 2011 run

Module:
2x2 towers

- Coverage $\Delta \eta = 1.4$, $\Delta \phi = 107^\circ$
- Granularity $\delta \eta = \delta \phi = 0.014$
- Resolution $\delta E/E = 11\% / \sqrt{E}$
- γ (π^0) and jet trigger

24 Strip Modules per Super Module
EMCal Trigger

- Level 0 trigger for unbiased γ, π^0, and e^\pm measurements
 - Avoid bias of p+p min bias
- L1 γ (π^0, and e^\pm) trigger
 - Overlapping 4x4 tower sums (a la PHENIX)
- L1 jet trigger
 - Overlapping jet-patches with multiplicity dependent E threshold
 - Programmable jet-patch size (N x N towers)
- Participate in High Level Trigger to use tracking information to improve jet energy resolution and refine threshold

<table>
<thead>
<tr>
<th>System</th>
<th>jet trigger?</th>
<th>N_{jets} (125 GeV)</th>
<th>N_{jets} (175 GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb+Pb cent</td>
<td>y</td>
<td>1.1×10^4</td>
<td>1700</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>2100</td>
<td>320</td>
</tr>
<tr>
<td>Pb+Pb periph</td>
<td>y</td>
<td>410</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>p+Pb 8.8 TeV</td>
<td>y</td>
<td>2.7×10^4</td>
<td>4200</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>250</td>
<td>40</td>
</tr>
<tr>
<td>p+p 14 TeV</td>
<td>y</td>
<td>6.9×10^5</td>
<td>1.0 $\times 10^5$</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>1200</td>
<td>190</td>
</tr>
</tbody>
</table>
Reconstructing Jets in A+A

• The Challenge:
 - To find the jet in the high multiplicity environment of central collisions A+A
 - Aided by angular ordering of fragmentation process
 - To remove the soft background in order to study the modified fragmentation
Reconstructing Jets in A+A

- **Strategy:**
 - To determine jet energy use restricted cone radius $R_c \approx 0.3 - 0.4$ and particle p_T threshold to minimize underlying event contribution
 - Large cones worsen jet energy measurement
 - Estimate and subtract energy of underlying event by measuring energy in equivalent cone area outside jet region
 - Correct jet energy scale for cone acceptance
 - Test by embedding jets in A+A events
- Works well!
Jet fragmentation modification

- Use simulations to test and develop algorithms
 - Cone radius, p_T cut, background subtraction

- Results confirm that jet modifications can be extracted reliably and are sensitive to energy loss parameters

Annual ALICE run statistics

$<E_{\text{input}}>$~175 GeV

$\text{Pb+Pb 0-10\%: } <\hat{q}> = 50 \text{ GeV}^2/\text{fm}$

Diagram Details

- Ideal $R_c=1.0$, $p_t=0.0 \text{ GeV}$
- $\text{Pb+Pb } R_c=0.4$, $p_t=1.0 \text{ GeV}$

References

- EMCal + tracking $R=0.4$, $p_t=1.0$
- EMCal + tracking $R=0.4$, $p_t=1.0$, APQ

Footnote

Large background corrections, 5% sys. uncertainty assumed

Chart

- $\frac{1}{N_{\text{jet rec}}}$ vs. dN/dE
- $\zeta = \ln(E_{\text{rec}}/p_t)$

Slide: 12

Terry Awes, PANIC’08, Eilat, Israel
ALICE Jet Measurement Program

- Baseline measurement in p+p
 - Detailed FF measurements with PID to low z
 - Of interest to improve understanding of fragmentation process

- In Pb+Pb measure modifications
 - Extract quenching parameters characterizing the medium
 - Currently model dependences dominate uncertainties
 - Cone radius dependence
 - E.g., suppressed early radiation (high z) due to absorption, but enhanced low z radiation within large cone
 - Other features: Near-side Ridge and away-side Cone

- Investigate HBP for identified particles, especially at low p_T
 - Electron tagged b and c jets
 - Quark mass dependence of parton E_{loss}
 - Modifications of the flavor content of jet due to medium
 - Flavor changing interactions during propagation through the medium
Summary

• ALICE will excel at Jet fragmentation measurements
 - Large acceptance EMCal with good resolution and granularity
 - Trigger on Jets (and high $p_T \gamma$’s (e^\pm), and π^0’s)
 - Superb particle identification and tracking to high p_T

• Analysis procedures have been developed and are ready for the challenge of Jet measurements in Pb+Pb collisions
Jet Resolution

Resolution (RMS/mean) vs Jet Energy (GeV):
- Pb+Pb + full detector simulation
- p+p + full detector simulation

Energy (rel. to fully reconstructed jets, R = 1)

Direction (η,φ):
- Δη RMS for PbPb
- Δφ RMS for pp
- Δη RMS for pp