Weak reactions with light nuclei

Nir Barnea, Sergey Vaintraub
The Hebrew University
Doron Gazit
INT, University of Washington

Eilat, November 9-14, 2008
Motivation

PP The energy production in the sun is dominated by the pp-chain $pp \rightarrow d + e^+ + \nu_e$.

$\begin{align*}
q & = k - k' \\
q & = (\omega, q)
\end{align*}$

The energy production in the sun is dominated by the pp-chain $pp \rightarrow d + e^+ + \nu_e$.

$\begin{align*}
q & = k - k' \\
q & = (\omega, q)
\end{align*}$
Motivation

PP The energy production in the sun is dominated by the pp-chain $pp \rightarrow d + e^+ + \nu_e$.

Hep The Hep process produce the highest energy solar neutrinos through the reaction, $^3\text{He} + p \rightarrow ^4\text{He} + e^+ + \nu_e$.

k^μ $q^\mu = k^\mu - k'^\mu$
$q^\mu = (\omega, q)$

k^μ $P_0$$P_\mu$$P_f$
Motivation

PP The energy production in the sun is dominated by the pp-chain \(pp \rightarrow d + e^+ + \nu_e \).

Hep The *Hep* process produce the highest energy solar neutrinos through the reaction, \({}^3\text{He} + p \rightarrow {}^4\text{He} + e^+ + \nu_e \).

SNII SN type II - Energy transfer to the matter behind the accretion shock through inelastic reactions (Haxston 1988).

\[q^\mu = k^\mu - k'^\mu \]
\[q = (\omega, q) \]
The energy production in the sun is dominated by the pp-chain $pp \rightarrow d + e^+ + \nu_e$.

The Hep process produce the highest energy solar neutrinos through the reaction, $^3\text{He} + p \rightarrow ^4\text{He} + e^+ + \nu_e$.

SN type II - Energy transfer to the matter behind the accretion shock through inelastic reactions (Haxston 1988).

The $^7\text{Li}, ^{11}\text{B}$ nucleosynthesis reaction chains are dominated by the neutrino flux (Woosely et al. 1990).

$$^4\text{He}(\nu, \nu'p)^3\text{H}(\alpha, \gamma)^7\text{Li}(\alpha, \gamma)^{11}\text{B}$$

$$^4\text{He}(\nu, \nu'n)^3\text{He}(\alpha, \gamma)^7\text{Be}(e^-, \nu_e)^7\text{Li}$$

$$^{12}\text{C}(\nu, \nu'p)^{11}\text{B}$$
PP The energy production in the sun is dominated by the pp-chain $pp \rightarrow d + e^+ + \nu_e$.

Hep The Hep process produce the highest energy solar neutrinos through the reaction,

$^3\text{He} + p \rightarrow ^4\text{He} + e^+ + \nu_e$.

SNII SN type II - Energy transfer to the matter behind the accretion shock through inelastic reactions (Haxston 1988).

NS The ^7Li, ^{11}B nucleosynthesis reaction chains are dominated by the neutrino flux (Woosely et al. 1990).

\[
^4\text{He}(\nu, \nu'p)^3\text{H}(\alpha, \gamma)^7\text{Li}(\alpha, \gamma)^{11}\text{B} \\
^4\text{He}(\nu, \nu'n)^3\text{He}(\alpha, \gamma)^7\text{Be}(e^-, \nu_e)^7\text{Li} \\
^{12}\text{C}(\nu, \nu'p)^{11}\text{B}
\]

J_A The nuclear weak current.
Weak interaction with Nuclei

The weak Hamiltonian

\[H_W = - \frac{G}{\sqrt{2}} \int d\mathbf{x} j_\mu(\mathbf{x}) J^\mu(\mathbf{x}) \]

The leptonic current

\[\langle f | j_\mu(x) | i \rangle = l_\mu e^{-i q \cdot x} \]

The nuclear current

\[J_0^\mu = (1 - 2 \sin^2 \theta_W) \tau_0 \frac{1}{2} J^V_\mu + \tau_0 \frac{1}{2} J^A_\mu - 2 \sin^2 \theta_W J^V_\mu J^\pm_\mu = \tau_\pm \frac{1}{2} J^V_\mu + \tau_\pm \frac{1}{2} J^A_\mu \]

\[q^\mu = k^\mu - k'^\mu \]

\[q^\mu = (\omega, \mathbf{q}) \]
Weak interaction with Nuclei

The weak Hamiltonian

\[H_W = -\frac{G}{\sqrt{2}} \int dx j_\mu(x) J^\mu(x) \]

The leptonic current

\[\langle f | j_\mu(x) | i \rangle = l_\mu e^{-iq \cdot x} \]
Weak interaction with Nuclei

The weak Hamiltonian

\[H_W = -\frac{G}{\sqrt{2}} \int dx j_\mu(x) J^\mu(x) \]

The leptonic current

\[\langle f | j_\mu(x) | i \rangle = l_\mu e^{-iq \cdot x} \]

The nuclear current

\[
\begin{align*}
J^0_\mu &= (1 - 2 \sin^2 \theta_W) \frac{\tau_0}{2} J^V_\mu + \frac{\tau_0}{2} J^A_\mu - 2 \sin^2 \theta_W \frac{1}{2} J^V_\mu \\
J^\pm_\mu &= \frac{\tau^\pm}{2} J^V_\mu + \frac{\tau^\pm}{2} J^A_\mu
\end{align*}
\]
The Nuclear Current

- The currents are derived from EFT NLO Chiral Lagrangian and are accurate to N^3LO.

\[J_{V,A}^{\mu} = J_{V,A}^{\mu}(1\text{-body}) + J_{V,A}^{\mu}(2\text{-body}) \]

Charge conservation. The vector current must fulfill

\[\nabla \cdot J_V(x) = -i[H, J_{V,0}(x)] \]

The nuclear vector current contains convection and spin terms

\[J(q) = J_c(q) + J_s(q) \]

At low q, $J_s(q)$ is suppressed.

At low energy, the vector current MEC are implicitly included via the Siegert theorem.
The currents are derived from EFT NLO Chiral Lagrangian and are accurate to N^3LO.

The resulting currents contain the standard 1–body currents and the EFT derived 2–body current,

\[J_{\mu}^{V,A} = J_{\mu}^{V,A}(1\text{body}) + J_{\mu}^{V,A}(2\text{body}) \]
The Nuclear Current

- The currents are derived from EFT NLO Chiral Lagrangian and are accurate to N^3LO.
- The resulting currents contain the standard 1–body currents and the EFT derived 2–body current,

\[J^V_A = J^V_A(1\text{body}) + J^V_A(2\text{body}) \]

- Charge conservation. The vector current must fulfill

\[\nabla \cdot J^V(x) = -i[H, J^V_0(x)] \]
The currents are derived from EFT NLO Chiral Lagrangian and are accurate to $N^3\text{LO}$.

The resulting currents contain the standard 1–body currents and the EFT derived 2–body current,

$$J_{\mu}^{V,A} = J_{\mu}^{V,A}(1\text{body}) + J_{\mu}^{V,A}(2\text{body})$$

Charge conservation. The vector current must fulfill

$$\nabla \cdot J^V(x) = -i[H, J^V_0(x)]$$

The nuclear vector current contains convection and spin terms $J(q) = J_c(q) + J_s(q)$. At low q $J_s(q)$ is suppressed.
The currents are derived from EFT NLO Chiral Lagrangian and are accurate to N3LO.

The resulting currents contain the standard 1–body currents and the EFT derived 2–body current,

\[J_{\mu}^{V,A} = J_{\mu}^{V,A}(1\text{body}) + J_{\mu}^{V,A}(2\text{body}) \]

Charge conservation. The vector current must fulfill

\[\nabla \cdot J^V(x) = -i[H,J_0^V(x)] \]

The nuclear vector current contains convection and spin terms \(J(q) = J_c(q) + J_s(q) \). At low \(q \) \(J_s(q) \) is suppressed.

At low energy, the vector current MEC are implicitly included via the Siegert theorem.
The Nuclear Current

- The currents are derived from EFT NLO Chiral Lagrangian and are accurate to N^3LO.
- The resulting currents contain the standard 1–body currents and the EFT derived 2–body current,

\[J^{V, A}_\mu = J^{V, A}_\mu(1\text{body}) + J^{V, A}_\mu(2\text{body}) \]

- Charge conservation. The vector current must fulfill

\[\nabla \cdot J^V (x) = -i[H, J^V_0 (x)] \]

- The nuclear vector current contains convection and spin terms \(J(q) = J_c(q) + J_s(q) \). At low \(q \), \(J_s(q) \) is suppressed.

- At low energy, the vector current MEC are implicitly included via the Siegert theorem.
The Nuclear Current

- The currents are derived from EFT NLO Chiral Lagrangian and are accurate to N^3LO.
- The resulting currents contain the standard 1–body currents and the EFT derived 2–body current,

\[J_{\mu}^{V,A} = J_{\mu}^{V,A}(1\text{body}) + J_{\mu}^{V,A}(2\text{body}) \]

- Charge conservation. The **vector** current must fulfill

\[\nabla \cdot J^V(x) = -i[H, J_0^V(x)] \]

- The nuclear **vector** current contains convection and spin terms \(J(q) = J_c(q) + J_s(q) \). At low \(q \), \(J_s(q) \) is suppressed.

- At low energy, the **vector** current MEC are implicitly included via the Siegert theorem.
For the **axial** current the MEC must be included explicitly.

(a)

(b)
- For the **axial** current the MEC must be included explicitly.
- At leading order the axial MEC contains two terms with **one free parameter**.
For the axial current the MEC must be included explicitly.

At leading order the axial MEC contains two terms with one free parameter.

(a) A one-pion exchange term.
The Nuclear Current

- For the **axial** current the MEC must be included explicitly.
- At leading order the axial MEC contains two terms with one free parameter.
 - a A one-pion exchange term.
 - b Renormalization, or contact, term.
For the axial current the MEC must be included explicitly.

At leading order the axial MEC contains two terms with one free parameter.

- A one-pion exchange term.
- Renormalization, or contact, term.

The MEC are fixed by the triton half-life.
The Nuclear Current

- For the **axial** current the MEC must be included explicitly.
- At leading order the axial MEC contains two terms with **one free parameter**.
 - a. A one-pion exchange term.
 - b. Renormalization, or contact, term.

- The MEC are fixed by the triton half-life.
- The renormalization coefficient depends on the cutoff.
The Nuclear Current

- For the **axial** current the MEC must be included explicitly.
- At leading order the axial MEC contains two terms with one free parameter.
 - A one-pion exchange term.
 - Renormalization, or contact, term.
- The MEC are fixed by the triton half-life.
- The renormalization coefficient depends on the cutoff.
For the **axial** current the **MEC** must be included explicitly.

At leading order the axial **MEC** contains two terms with one free parameter.

- A one-pion exchange term.
- Renormalization, or contact, term.

The **MEC** are fixed by the triton half-life.

The renormalization coefficient depends on the cutoff.
the long wavelength $q \rightarrow 0$ limit

For low momentum transfer $qR \approx 7 \cdot 10^{-3} \omega A^{1/3} \ll 1$. The multipole expansion converge very fast.
the long wavelength $q \rightarrow 0$ limit

For low momentum transfer $qR \approx 7 \cdot 10^{-3} \omega A^{1/3} \ll 1$. The multipole expansion converge very fast.

- At $q = 0$ the leading operators are the Fermi and Gamow-Teller

\[
F = \frac{1}{\sqrt{4\pi}} \tau_{\pm}
\]

\[
GT = -i g_A \sqrt{\frac{2}{3}} [\sigma \otimes Y_0(\hat{r})]^{(1)}_{\pm} \tau_{\pm}
\]
the long wavelength $q \rightarrow 0$ limit

For low momentum transfer $qR \approx 7 \cdot 10^{-3} \omega A^{1/3} \ll 1$. The multipole expansion converge very fast.

- At $q = 0$ the leading operators are the Fermi and Gamow-Teller
 \[
 F = \frac{1}{\sqrt{4\pi}} \tau_{\pm}
 \]
 \[
 GT = -ig_A \sqrt{\frac{2}{3}} [\sigma \otimes Y_0(\hat{r})]_M^{(1)} \tau_{\pm}
 \]
- The 2–body currents contribute mainly to the GT, E_1^A multipole.
the long wavelength $q \rightarrow 0$ limit

For low momentum transfer $qR \approx 7 \times 10^{-3} \omega A^{1/3} \ll 1$. The multipole expansion converge very fast.

The sub-leading operators,

- At $q = 0$ the leading operators are the Fermi and Gamow-Teller

 $$F = \frac{1}{\sqrt{4\pi}} \tau_\pm$$

 $$GT = -i g_A \sqrt{\frac{2}{3}} [\sigma \otimes Y_0(\hat{r})]_M^{(1)} \tau_\pm$$

- The 2–body currents contribute mainly to the GT, E_1^A multipole.

 $$C_0^A(q) = \frac{i}{\sqrt{4\pi}} \sigma \cdot \nabla$$

 $$L_0^A(q) = i g_A \frac{q}{3} [\sigma \otimes Y_1(\hat{r})]^{(0)}$$

 $$C_{1M}^V(q) = \frac{q}{3} Y_{1M}(\hat{r})$$

 $$E_{1M}^V(q) = -\sqrt{2} \frac{\omega}{q} C_{1M}^V(q)$$

 $$L_{1M}^V(q) = -\frac{\omega}{q} C_{1M}^V(q)$$

 $$M_{1M}^V(q) = -\frac{i}{\sqrt{6\pi}} \frac{q}{2 M_N} l_M$$

 $$M_{1M}^A(q) = -g_A \frac{q}{3} [\sigma \otimes Y_1(\hat{r})]_M^{(1)}$$

 $$E_{2M}^A(q) = i \sqrt{\frac{3}{5}} g_A \frac{q}{3} [\sigma \otimes Y_1(\hat{r})]_M^{(2)}$$

 $$L_{2M}^A(q) = \sqrt{\frac{2}{3}} E_{2M}^A(q)$$
The JISP16 NN Potential

The JISP16 reproduce the NN phase shifts in the range $0 - 300$ MeV.

<table>
<thead>
<tr>
<th></th>
<th>AV18+UBIX</th>
<th>JISP16</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2.24</td>
<td>2.24</td>
<td>2.24</td>
</tr>
<tr>
<td>3H</td>
<td>8.48</td>
<td>8.35</td>
<td>8.48</td>
</tr>
<tr>
<td>3He</td>
<td>7.74</td>
<td>7.65</td>
<td>7.72</td>
</tr>
<tr>
<td>4He</td>
<td>28.5</td>
<td>28.3</td>
<td>28.3</td>
</tr>
<tr>
<td>6He</td>
<td>-</td>
<td>29.0</td>
<td>29.29</td>
</tr>
<tr>
<td>6Li</td>
<td>-</td>
<td>31.9</td>
<td>31.99</td>
</tr>
</tbody>
</table>

AV18+UBIX - Argonne V18 + Urbana IX
JISP16 - J-matrix Inverse Scattering Potential, Shirokov et al.
The JISP16 NN Potential

The JISP16 reproduce the NN phase shifts in the range 0 – 300MeV.

<table>
<thead>
<tr>
<th></th>
<th>AV18+UBIX</th>
<th>JISP16</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2.24</td>
<td>2.24</td>
<td>2.24</td>
</tr>
<tr>
<td>3H</td>
<td>8.48</td>
<td>8.35</td>
<td>8.48</td>
</tr>
<tr>
<td>3He</td>
<td>7.74</td>
<td>7.65</td>
<td>7.72</td>
</tr>
<tr>
<td>4He</td>
<td>28.5</td>
<td>28.3</td>
<td>28.3</td>
</tr>
<tr>
<td>6He</td>
<td>-</td>
<td>29.0</td>
<td>29.29</td>
</tr>
<tr>
<td>6Li</td>
<td>-</td>
<td>31.9</td>
<td>31.99</td>
</tr>
</tbody>
</table>

AV18+UBIX - Argonne V18 + Urbana IX
JISP16 - J-matrix Inverse Scattering Potential, Shirokov et al.
The β-decay half-life

\[t_{1/2} = \frac{1}{f} \frac{\tau \log 2}{\langle F \rangle^2 + (F_A/F_V)^2 \langle GT \rangle^2} \]

\[\langle GT \rangle \equiv \langle \psi_f \mid \sum_j \sigma_j \tau_j^+ \mid \psi_i \rangle \]

\[\langle F \rangle \equiv \langle \psi_f \mid \sum_j \tau_j^+ \mid \psi_i \rangle \]
Beta decay

The β-decay half-life

$$t_{1/2} = \frac{1}{f} \frac{\tau \log 2}{\langle F \rangle^2 + (F_A/F_V)^2 \langle GT \rangle^2}$$

$$\langle GT \rangle \equiv \langle \Psi_f \| \sum_j \sigma_j \tau_j^+ \| \Psi_i \rangle$$

$$\langle F \rangle \equiv \langle \Psi_f \| \sum_j \tau_j^+ \| \Psi_i \rangle$$

$^3\text{H} - ^3\text{He}$

<table>
<thead>
<tr>
<th>Potential</th>
<th>$\langle GT \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18+3NF</td>
<td>$\sqrt{3} \cdot 0.923(1)$</td>
</tr>
<tr>
<td>Bonn+3NF</td>
<td>$\sqrt{3} \cdot 0.936(1)$</td>
</tr>
<tr>
<td>JISP16 [This work]</td>
<td>$\sqrt{3} \cdot 0.9544(4)$</td>
</tr>
<tr>
<td>Expt.</td>
<td>$\sqrt{3} \cdot 0.955(3)$</td>
</tr>
</tbody>
</table>
Beta decay

The β-decay half-life

$$t_{1/2} = \frac{1}{f} \frac{\tau \log 2}{\langle F \rangle^2 + (F_A/F_V)^2 \langle GT \rangle^2}$$

$\langle GT \rangle \equiv \langle \Psi_f || \sum_j \sigma_j \tau_j^+ || \Psi_i \rangle$

$\langle F \rangle \equiv \langle \Psi_f || \sum_j \tau_j^+ || \Psi_i \rangle$

$^3\text{H} - ^3\text{He}$

<table>
<thead>
<tr>
<th>Potential</th>
<th>$\langle GT \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18+3NF</td>
<td>$\sqrt{3} \cdot 0.923(1)$</td>
</tr>
<tr>
<td>Bonn+3NF</td>
<td>$\sqrt{3} \cdot 0.936(1)$</td>
</tr>
<tr>
<td>JISP16 [This work]</td>
<td>$\sqrt{3} \cdot 0.9544(4)$</td>
</tr>
<tr>
<td>Expt.</td>
<td>$\sqrt{3} \cdot 0.955(3)$</td>
</tr>
</tbody>
</table>

$^6\text{He} - ^6\text{Li}$

<table>
<thead>
<tr>
<th>Potential</th>
<th>$\langle GT \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18/UIX - VMC</td>
<td>2.250(7)</td>
</tr>
<tr>
<td>AV18/IL2 - VMC</td>
<td>2.22(2)</td>
</tr>
<tr>
<td>AV18/IL2 - GFMC</td>
<td>2.182(25)</td>
</tr>
<tr>
<td>AV8/TM - NCSM</td>
<td>2.283(2)</td>
</tr>
<tr>
<td>JISP16 - [This work]</td>
<td>2.229(3)</td>
</tr>
<tr>
<td>Expt.</td>
<td>2.170(3)</td>
</tr>
</tbody>
</table>
The β-decay half-life

$$t_{1/2} = \frac{1}{f} \frac{\tau \log 2}{\langle F \rangle^2 + (F_A/F_V)^2 \langle GT \rangle^2}$$

\[\langle GT \rangle \equiv \langle \Psi_f || \sum_j \sigma_j \tau_j^+ || \Psi_i \rangle \]
\[\langle F \rangle \equiv \langle \Psi_f || \sum_j \tau_j^+ || \Psi_i \rangle \]

3H - 3He

<table>
<thead>
<tr>
<th>Potential</th>
<th>$\langle GT \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18+3NF</td>
<td>$\sqrt{3} \cdot 0.923(1)$</td>
</tr>
<tr>
<td>Bonn+3NF</td>
<td>$\sqrt{3} \cdot 0.936(1)$</td>
</tr>
<tr>
<td>JISP16 [This work]</td>
<td>$\sqrt{3} \cdot 0.9544(4)$</td>
</tr>
<tr>
<td>Expt.</td>
<td>$\sqrt{3} \cdot 0.955(3)$</td>
</tr>
</tbody>
</table>

6He - 6Li

<table>
<thead>
<tr>
<th>Potential</th>
<th>$\langle GT \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18/UIX - VMC</td>
<td>2.250(7)</td>
</tr>
<tr>
<td>AV18/IL2 - VMC</td>
<td>2.22(2)</td>
</tr>
<tr>
<td>AV18/IL2 - GFMC</td>
<td>2.182(25)</td>
</tr>
<tr>
<td>AV8/TM - NCSM</td>
<td>2.283(2)</td>
</tr>
<tr>
<td>JISP16 - [This work]</td>
<td>2.229(3)</td>
</tr>
<tr>
<td>Expt.</td>
<td>2.170(3)</td>
</tr>
</tbody>
</table>

- 1-body currents underpredict the 3-body GT, and overpredict the 6-body GT.
Beta decay - 2-body current

The Gamow-Teller $^6\text{He} - ^6\text{Li}$ matrix element

<table>
<thead>
<tr>
<th>Potential</th>
<th>1-body</th>
<th>2-body</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18/UIX - VMC</td>
<td>2.250(7)</td>
<td>2.281(7)</td>
</tr>
<tr>
<td>JISP16 [This work]</td>
<td>2.229(3)</td>
<td>2.193(2)</td>
</tr>
<tr>
<td>Expt.</td>
<td></td>
<td>2.170(3)</td>
</tr>
</tbody>
</table>
The Gamow-Teller 6He - 6Li matrix element

<table>
<thead>
<tr>
<th>Potential</th>
<th>1-body</th>
<th>2-body</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18/UIX - VMC</td>
<td>2.250(7)</td>
<td>2.281(7)</td>
</tr>
<tr>
<td>JISP16 [This work]</td>
<td>2.229(3)</td>
<td>2.193(2)</td>
</tr>
<tr>
<td>Expt.</td>
<td></td>
<td>2.170(3)</td>
</tr>
</tbody>
</table>

- The VMC calculation with MEC made things even worse for 6He!
The Gamow-Teller 6He - 6Li matrix element

<table>
<thead>
<tr>
<th>Potential</th>
<th>1-body</th>
<th>2-body</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18/UIX - VMC</td>
<td>2.250(7)</td>
<td>2.281(7)</td>
</tr>
<tr>
<td>JISP16 [This work]</td>
<td>2.229(3)</td>
<td>2.193(2)</td>
</tr>
<tr>
<td>Expt.</td>
<td></td>
<td>2.170(3)</td>
</tr>
</tbody>
</table>

- The VMC calculation with **MEC** made things even worse for 6He!
- HH calculations with EFT **2-body** currents reconcile theory and experiment!
The Gamow-Teller 6He - 6Li matrix element

<table>
<thead>
<tr>
<th>Potential</th>
<th>1-body</th>
<th>2-body</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18/UIX - VMC</td>
<td>2.250(7)</td>
<td>2.281(7)</td>
</tr>
<tr>
<td>JISP16 [This work]</td>
<td>2.229(3)</td>
<td>2.193(2)</td>
</tr>
<tr>
<td>Expt.</td>
<td></td>
<td>2.170(3)</td>
</tr>
</tbody>
</table>

- The VMC calculation with MEC made things even worse for 6He!
- HH calculations with EFT 2-body currents reconcile theory and experiment!
- The matrix-element is almost independent of the cutoff!
The 1-body current underpredict the 3H β-decay $\langle GT \rangle$.

It overpredict the 6He β-decay $\langle GT \rangle$.

2-body currents derived from meson exchange model go in the wrong direction for 6He!

In contrast, EFT 2-body currents lead to reconciliation between theory and experiment.

The predicted 6He β-decay half-life is independent of the cutoff.
Conclusions

1. The 1-body current underpredict the 3H β-decay $\langle GT \rangle$.
2. It overpredict the 6He β-decay $\langle GT \rangle$.

Nir Barnea (HUJI)
Weak reactions with light nuclei
PANIC 2008
The 1-body current underpredict the 3H β-decay $\langle GT \rangle$.

It overpredict the 6He β-decay $\langle GT \rangle$.

2-body currents derived from meson exchange model go in the wrong direction for 6He!

In contrast, EFT 2-body currents lead to reconciliation between theory and experiment.

The predicted 6He β-decay half-life is independent of the cutoff.
1. The 1-body current underpredict the ^3H β-decay $\langle GT \rangle$.

2. It overpredict the ^6He β-decay $\langle GT \rangle$.

3. 2-body currents derived from meson exchange model go in the wrong direction for ^6He!

4. In contrast, EFT 2-body currents lead to reconciliation between theory and experiment.
Conclusions

1. The 1-body current underpredict the 3H β-decay $\langle GT \rangle$.
2. It overpredict the 6He β-decay $\langle GT \rangle$.
3. 2-body currents derived from meson exchange model go in the wrong direction for 6He!
4. In contrast, EFT 2-body currents lead to reconciliation between theory and experiment.
5. The predicted 6He β-decay half life is independent of the cutoff.